Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953495

RESUMO

Long noncoding RNAs (lncRNAs) act as the dynamic regulatory molecules that control the expression of genes and affect numerous biological processes, and their dysregulation is associated with tumor progression. Herein, we develop a fluorescent light-up aptasensor to simultaneously measure multiple lncRNAs in living cells and breast tissue samples based on the DNAzyme-mediated cleavage reaction and transcription-driven synthesis of light-up aptamers. When target lncRNAs are present, they can be recognized by template probes to form the active DNAzyme structures, initiating the T4 PNK-catalyzed dephosphorylation-triggered extension reaction to generate double-strand DNAs with the T7 promoter sequences. The corresponding T7 promoters can initiate the transcription amplification catalyzed by the T7 RNA polymerase to generate abundant Broccoli aptamers and malachite green aptamers, which can bind DFHBI-1T and MG to generate strong fluorescence signals. Taking advantage of the good selectivity of DNAzyme-mediated cleavage of lncRNAs, high amplification efficiency of T7 transcription-driven amplification reaction, and bright fluorescence of the RNA aptamer-fluorophore complex, this method exhibits high sensitivity with a detection limit of 21.4 aM for lncRNA HOTAIR and 18.47 aM for lncRNA MALAT1, and it can accurately measure multiple lncRNAs in both tumor cell lines and breast tissue samples, providing a powerful paradigm for biomedical research and early clinic diagnostics.

2.
Exp Parasitol ; 262: 108788, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759775

RESUMO

Giardiasis is a common waterborne zoonotic disease caused by Giardia intestinalis. Upon infection, Giardia releases excretory and secretory products (ESPs) including secreted proteins (SPs) and extracellular vesicles (EVs). Although the interplay between ESPs and intestinal epithelial cells (IECs) has been previously described, the functions of EVs in these interactions and their differences from those of SPs require further exploration. In the present study, EVs and EV-depleted SPs were isolated from Giardia ESPs. Proteomic analyses of isolated SPs and EVs showed 146 and 91 proteins, respectively. Certain unique and enriched proteins have been identified in SPs and EVs. Transcriptome analysis of Caco-2 cells exposed to EVs showed 96 differentially expressed genes (DEGs), with 56 upregulated and 40 downregulated genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) indicated that Caco-2 genes related to metabolic processes, the HIF-1 signaling pathway, and the cAMP signaling pathway were affected. This study provides new insights into host-parasite interactions, highlighting the potential significance of EVs on IECs during infections.


Assuntos
Vesículas Extracelulares , Giardia lamblia , Mucosa Intestinal , Humanos , Células CACO-2 , Giardia lamblia/genética , Giardia lamblia/metabolismo , Vesículas Extracelulares/metabolismo , Mucosa Intestinal/parasitologia , Mucosa Intestinal/metabolismo , Perfilação da Expressão Gênica , Células Epiteliais/parasitologia , Células Epiteliais/metabolismo , Proteômica , Interações Hospedeiro-Parasita , Expressão Gênica , Transcriptoma , Giardíase/parasitologia
3.
Plants (Basel) ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611482

RESUMO

The perennial legume alfalfa (Medicago sativa L.) is of high value in providing cheap and high-nutritive forages. Due to a lack of tillage during the production period, the soil in which alfalfa grows prunes to become compacted through highly mechanized agriculture. Compaction deteriorates the soil's structure and fertility, leading to compromised alfalfa development and productivity. However, the way alfalfa responses to different levels of soil compaction and the underlying molecular mechanism are still unclear. In this study, we systematically evaluated the effects of gradient compacted soil on the growth of different cultivars of alfalfa, especially the root system architecture, phytohormones and internal gene expression profile alterations. The results showed that alfalfa growth was facilitated by moderate soil compaction, but drastically inhibited when compaction was intensified. The inhibition effect was universal across different cultivars, but with different severity. Transcriptomic and physiological studies revealed that the expression of a set of genes regulating the biosynthesis of lignin and flavonoids was significantly repressed in compaction treated alfalfa roots, and this might have resulted in a modified secondary cell wall and xylem vessel formation. Phytohormones, like ABA, are supposed to play pivotal roles in the regulation of the overall responses. These findings provide directions for the improvement of field soil management in alfalfa production and the molecular breeding of alfalfa germplasm with better soil compaction resilience.

4.
Anal Chem ; 96(13): 5323-5330, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501982

RESUMO

Oxidative DNA damage is closely associated with the occurrence of numerous human diseases and cancers. 8-Oxo-7,8-dihydroguanine (8-oxoG) is the most prevalent form of DNA damage, and it has become not only an oxidative stress biomarker but also a new epigenetic-like biomarker. However, few approaches are available for the locus-specific detection of 8-oxoG because of the low abundance of 8-oxoG damage in DNA and the limited sensitivity of existing assays. Herein, we demonstrate the elongation and ligation-mediated differential coding for label-free and locus-specific analysis of 8-oxoG in DNA. This assay is very simple without the involvement of any specific labeled probes, complicated steps, and large sample consumption. The utilization of Bsu DNA polymerase can specifically initiate a single-base extension reaction to incorporate dATP into the opposite position of 8-oxoG, endowing this assay with excellent selectivity. The introduction of cascade amplification reaction significantly enhances the sensitivity. The proposed method can monitor 8-oxoG with a limit of detection of 8.21 × 10-19 M (0.82 aM), and it can identify as low as 0.001% 8-oxoG damage from a complex mixture with excessive undamaged DNAs. This method can be further applied to measure 8-oxoG levels in the genomic DNA of human cells under diverse oxidative stress, holding prospect potential in the dynamic monitoring of critical 8-oxoG sites, early clinical diagnosis, and gene damage-related biomedical research.


Assuntos
DNA Polimerase Dirigida por DNA , DNA , Guanina/análogos & derivados , Humanos , DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Dano ao DNA , Biomarcadores , Reparo do DNA
5.
Front Mol Neurosci ; 16: 1163981, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333615

RESUMO

Proper mitochondrial performance is imperative for the maintenance of normal neuronal function to prevent the development of neurodegenerative diseases. Persistent accumulation of damaged mitochondria plays a role in prion disease pathogenesis, which involves a chain of events that culminate in the generation of reactive oxygen species and neuronal death. Our previous studies have demonstrated that PINK1/Parkin-mediated mitophagy induced by PrP106-126 is defective and leads to an accumulation of damaged mitochondria after PrP106-126 treatment. Externalized cardiolipin (CL), a mitochondria-specific phospholipid, has been reported to play a role in mitophagy by directly interacting with LC3II at the outer mitochondrial membrane. The involvement of CL externalization in PrP106-126-induced mitophagy and its significance in other physiological processes of N2a cells treated with PrP106-126 remain unknown. We demonstrate that the PrP106-126 peptide caused a temporal course of mitophagy in N2a cells, which gradually increased and subsequently decreased. A similar trend in CL externalization to the mitochondrial surface was seen, resulting in a gradual decrease in CL content at the cellular level. Inhibition of CL externalization by knockdown of CL synthase, responsible for de novo synthesis of CL, or phospholipid scramblase-3 and NDPK-D, responsible for CL translocation to the mitochondrial surface, significantly decreased PrP106-126-induced mitophagy in N2a cells. Meanwhile, the inhibition of CL redistribution significantly decreased PINK1 and DRP1 recruitment in PrP106-126 treatment but had no significant decrease in Parkin recruitment. Furthermore, the inhibition of CL externalization resulted in impaired oxidative phosphorylation and severe oxidative stress, which led to mitochondrial dysfunction. Our results indicate that CL externalization induced by PrP106-126 on N2a cells plays a positive role in the initiation of mitophagy, leading to the stabilization of mitochondrial function.

6.
Mol Neurobiol ; 60(3): 1391-1407, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36449254

RESUMO

Failed communication between mitochondria and lysosomes causes dysfunctional mitochondria, which may induce mitochondria-related neurodegenerative diseases. Here, we show that RAB7A, a small GTPase of the Rab family, mediates the crosstalk between these two important organelles to maintain homeostasis in N2a cells treated with PrP106-126. Specifically, we demonstrate that mitophagy deficiency in N2a cells caused by PrP106-126 is associated with dysregulated RAB7A localization in mitochondria. Cells lacking RAB7A display decreased mitochondrial colocalization with lysosomes and significantly increased mitochondrial protein expression, resulting in inhibited mitophagy. In contrast, overexpression of GTP-bound RAB7A directly induces lysosome colocalization with mitochondria. Further study revealed that GTP-bound RAB7A protects mitochondrial homeostasis by supporting autophagosome biogenesis. Moreover, we suggest that depletion of RAB7A leads to gross morphological changes in lysosomes, which prevents autophagosome-lysosome fusion and interferes with the breakdown of autophagic cargo within lysosomes. Overexpression of GTP-bound RAB7A can also alleviate PrP106-126-induced morphological damage and dysfunction of mitochondria, reducing neuronal apoptosis. Collectively, our data demonstrate that RAB7A successfully drives mitochondria to the autophagosomal lumen for degradation, suggesting that the communication of proteotoxic stress from mitochondria to lysosomes requires RAB7A, as a signaling molecule, to establish a link between the disturbed mitochondrial network and its remodeling. These findings indicate that small molecules regulating mitophagy have the potential to modulate cellular homeostasis and the clinical course of neurodegenerative diseases. Proposed model of mitophagy regulated by RAB7A. (1) Accumulating PrP106-126 induced mitophagy. (2) RAB7A is recruited to mitochondria. (3) ATG5-12 and ATG9A (5) vesicles are recruited to the autophagosome formation sites in a RAB7A-dependent manner. The ATG5-12 complex recruits and anchors LC3-I to form active LC3-II (4), accelerating mitophagosomal formation. The ATG9A vesicles are thought to be a source of membranes for autophagosome assembly. The recruitment of proteins and lipids induces membrane expansion and subsequent closure to form the mitophagosome. (6) Maintenance of the normal low lysosomal PH depends on active (GTP-bound) RAB7A. (7) RAB7A recruits effector molecules responsible for tight membrane interactions, and directly or indirectly, the subsequent autophagosome merges with the lysosome, and the cargo is completely degraded.


Assuntos
Autofagossomos , Lisossomos , Proteínas Priônicas , proteínas de unión al GTP Rab7 , Humanos , Autofagossomos/metabolismo , Autofagia , Guanosina Trifosfato/metabolismo , Lisossomos/metabolismo , Proteínas Priônicas/metabolismo , Príons/metabolismo , proteínas de unión al GTP Rab7/metabolismo , Animais , Camundongos , Linhagem Celular
7.
Ageing Res Rev ; 84: 101817, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36503124

RESUMO

Mitochondria play key roles in bioenergetics, metabolism, and signaling; therefore, stable mitochondrial function is essential for cell survival, particularly in energy-intensive neuronal cells. In neurodegenerative diseases, damaged mitochondria accumulate in neurons causing associated bioenergetics deficiency, impaired cell signaling, defective cytoplasmic calcium buffering, and other pathological changes. Mitochondrial quality control is an important mechanism to ensure the maintenance of mitochondrial health, homeostasis, and mitophagy, the latter of which is a pathway that delivers defective mitochondria to the lysosome for degradation. Defective mitophagy is thought to be responsible for the accumulation of damaged mitochondria, which leads to cellular dysfunction and/or death in neurodegenerative diseases. PINK1/Parkin mainly regulates ubiquitin-dependent mitophagy, which is crucial for many aspects of mitochondrial physiology, particularly the initiation of autophagic mechanisms. Therefore, in the present review, we summarize the current knowledge of the conventional mitophagy pathway, focusing on the molecular mechanisms underlying mitophagy dysregulation in prion disease and other age-related neurodegenerative diseases, especially in relation to the PINK1/Parkin pathway. Moreover, we list the inducers of mitophagy that possess neuroprotective effects, in addition to their mechanisms related to the PINK1/Parkin pathway. These mechanisms may provide potential interventions centered on the regulation of mitophagy and offer therapeutic strategies for the treatment of neurodegenerative diseases.


Assuntos
Mitofagia , Doenças Neurodegenerativas , Proteínas Quinases , Ubiquitina-Proteína Ligases , Humanos , Doenças Neurodegenerativas/enzimologia , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Neural Regen Res ; 17(10): 2293-2299, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35259852

RESUMO

Prion disease represents a group of fatal neurogenerative diseases in humans and animals that are associated with energy loss, axonal degeneration, and mitochondrial dysfunction. Axonal degeneration is an early hallmark of neurodegeneration and is triggered by SARM1. We found that depletion or dysfunctional mutation of SARM1 protected against NAD+ loss, axonal degeneration, and mitochondrial functional disorder induced by the neurotoxic peptide PrP106-126. NAD+ supplementation rescued prion-triggered axonal degeneration and mitochondrial dysfunction and SARM1 overexpression suppressed this protective effect. NAD+ supplementation in PrP106-126-incubated N2a cells, SARM1 depletion, and SARM1 dysfunctional mutation each blocked neuronal apoptosis and increased cell survival. Our results indicate that the axonal degeneration and mitochondrial dysfunction triggered by PrP106-126 are partially dependent on SARM1 NADase activity. This pathway has potential as a therapeutic target in the early stages of prion disease.

9.
Cell Death Dis ; 13(2): 162, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35184140

RESUMO

A persistent accumulation of damaged mitochondria is part of prion disease pathogenesis. Normally, damaged mitochondria are cleared via a major pathway that involves the E3 ubiquitin ligase parkin and PTEN-induced kinase 1 (PINK1) that together initiate mitophagy, recognize and eliminate damaged mitochondria. However, the precise mechanisms underlying mitophagy in prion disease remain largely unknown. Using prion disease cell models, we observed PINK1-parkin-mediated mitophagy deficiency in which parkin depletion aggravated blocked mitochondrial colocalization with LC3-II-labeled autophagosomes, and significantly increased mitochondrial protein levels, which led to inhibited mitophagy. Parkin overexpression directly induced LC3-II colocalization with mitochondria and alleviated defective mitophagy. Moreover, parkin-mediated mitophagy was dependent on PINK1, since PINK1 depletion blocked mitochondrial Parkin recruitment and reduced optineurin and LC3-II proteins levels, thus inhibiting mitophagy. PINK1 overexpression induced parkin recruitment to the mitochondria, which then stimulated mitophagy. In addition, overexpressed parkin and PINK1 also protected neurons from apoptosis. Furthermore, we found that supplementation with two mitophagy-inducing agents, nicotinamide mononucleotide (NMN) and urolithin A (UA), significantly stimulated PINK1-parkin-mediated mitophagy. However, compared with NMN, UA could not alleviate prion-induced mitochondrial fragmentation and dysfunction, and neuronal apoptosis. These findings show that PINK1-parkin-mediated mitophagy defects lead to an accumulation of damaged mitochondria, thus suggesting that interventions that stimulate mitophagy may be potential therapeutic targets for prion diseases.


Assuntos
Mitofagia , Doenças Priônicas , Humanos , Neurônios/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
IEEE Trans Image Process ; 30: 9294-9305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34752393

RESUMO

Human-Object Interaction (HOI) detection devotes to learn how humans interact with surrounding objects via inferring triplets of 〈 human, verb, object 〉 . Recent HOI detection methods infer HOIs by directly extracting appearance features and spatial configuration from related visual targets of human and object, but neglect powerful interactive semantic reasoning between these targets. Meanwhile, existing spatial encodings of visual targets have been simply concatenated to appearance features, which is unable to dynamically promote the visual feature learning. To solve these problems, we first present a novel semantic-based Interactive Reasoning Block, in which interactive semantics implied among visual targets are efficiently exploited. Beyond inferring HOIs using discrete instance features, we then design a HOI Inferring Structure to parse pairwise interactive semantics among visual targets in scene-wide level and instance-wide level. Furthermore, we propose a Spatial Guidance Model based on the location of human body-parts and object, which serves as a geometric guidance to dynamically enhance the visual feature learning. Based on the above modules, we construct a framework named Interactive-Net for HOI detection, which is fully differentiable and end-to-end trainable. Extensive experiments show that our proposed framework outperforms existing HOI detection methods on both V-COCO and HICO-DET benchmarks and improves the baseline about 5.9% and 17.7% relatively, validating its efficacy in detecting HOIs.


Assuntos
Algoritmos , Semântica , Humanos
11.
Neoplasma ; 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34459207

RESUMO

Hepatocellular carcinoma (HCC) ranks third in the cause of death due to cancer. Circular RNA circSEC24 Homolog A (circSEC24A) has been uncovered to be upregulated in liver cancer. However, the function of circSEC24A in HCC is indistinct. We analyzed the microarray datasets GSE78520 and GSE94508 to search for differentially expressed circRNAs associated with HCC. Expression of circSEC24A, microRNA (miR)-455-3p, and protein phosphatase, Mg2+/Mn2+ dependent 1F (PPM1F) mRNA was detected by quantitative real-time polymerase chain reaction (RT-qPCR). Loss-of-function experiments were conducted to validate the biological function of circSEC24A in HCC cells in vitro and in vivo. Protein levels were evaluated by western blotting and immunohistochemistry (IHC). The relationship between circSEC24A or PPM1F and miR-455-3p was verified by a dual-luciferase reporter and/or RNA immunoprecipitation (RIP) assays. circSEC24A was overexpressed in HCC. circSEC24A silencing decreased xenograft tumor growth in vivo and repressed proliferation, metastasis, invasion, epithelial-to-mesenchymal transition (EMT), induced cell cycle arrest, and apoptosis of HCC cells in vitro. circSEC24A acted as a molecular sponge to sequester miR-455-3p, resulting in elevating the expression of PPM1F. miR-455-3p inhibitor reversed the suppressive impact of circSEC24A silencing on malignant behaviors of HCC cells. PPM1F overexpression offsets the inhibitory effect of miR-455-3p mimic on malignant behaviors of HCC cells. circSEC24A sponged miR-455-3p to elevate the PPM1F expression, resulting in accelerating malignant behaviors of HCC cells. The study provided a potential therapeutic target for patients with HCC.

12.
Procedia Comput Sci ; 176: 1567-1576, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042301

RESUMO

With the launch of the Education Informatization 2.0 action plan by the Ministry of Education, a large number of college information systems have been born in China. Most of these systems are single page web applications (SPA) based on traditional MVC structures. Due to the complex logic and high coupling between educational businesses, developers need to write a lot of code. The education information system has many businesses and high coupling between businesses that the system often face problems such as bloated frontend businesses, iterative system updates, and difficult incremental function developments. Combined with the idea of service-oriented architecture, this paper proposes a micro frontends solution and applies it to the new generation of graduate information platform of East China Normal University, which has better agile development capabilities. From the aspects of service separation, efficient development, and incremental upgrade, this paper verifies that the architecture can well adapt to the needs of future educational management information system. The design of the micro frontends provides a new idea for the development of a new generation of education information system.

13.
Procedia Comput Sci ; 176: 1813-1822, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042304

RESUMO

Since the Ministry of Education launched Education Informatization 2.0, the digitalization of colleges and universities has entered a stage of rapid growth. However, after more than 20 years of construction, problems such as system barriers and information islands have emerged in the digital construction of university systems. In order to solve such problems between the university systems, this paper proposes an easily expandable and configurable open information integration architecture by considering traditional information integration methods and combining with Web service technology. The architecture handles user service invocation information through a service layer, and manages the registration and invocation of services through a service module. The permission module manages user permissions to prevent information leakage and security issues. The data module abstracts data-related services to provide a basis for the deep use of data. And other optional development services are designed to satisfy special requirements for different platforms. The architecture proposed in this paper can integrate different heterogeneous subsystems in colleges and universities, eliminating the problem of system barriers and information islands, and providing specifications for the construction of new applications.

14.
Aging (Albany NY) ; 12(11): 11139-11151, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32526704

RESUMO

Prion diseases are neurodegenerative diseases associated with neuron damage and behavioral disorders in animals and humans. Melatonin is a potent antioxidant and is used to treat a variety of diseases. We investigated the neuroprotective effect of melatonin on prion-induced damage in N2a cells. N2a cells were pretreated with 10 µM melatonin for 1 hour followed by incubation with 100 µM PrP106-126 for 24 hours. Melatonin markedly alleviated PrP106-126-induced apoptosis of N2a cells, and inhibited PrP106-126-induced mitochondrial abnormality and dysfunction, including mitochondrial fragmentation and overproduction of reactive oxygen species (ROS), suppression of ATP, reduced mitochondrial membrane potential (MMP), and altered mitochondrial dynamic proteins dynamin-related protein 1 (DRP1) and optic atrophy protein 1 (OPA1). Our findings identify that pretreatment with melatonin prevents the deleterious effects of PrPSc on mitochondrial function and dynamics, protects synapses and alleviates neuron damage. Melatonin could be a novel and effective medication in the therapy of prion diseases.


Assuntos
Apoptose/efeitos dos fármacos , Melatonina/farmacologia , Dinâmica Mitocondrial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/patologia , Espécies Reativas de Oxigênio/metabolismo
15.
Neurobiol Dis ; 135: 104704, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31837420

RESUMO

Evidence of the gut microbiota influencing neurodegenerative diseases has been reported for several neural diseases. However, there is little insight regarding the relationship between the gut microbiota and prion disease. Here, using fecal samples of 12 prion-infected mice and 25 healthy controls, we analyzed the structure of the gut microbiota and metabolic changes by 16S rRNA sequencing and LC-MS-based metabolomics respectively as multi-omic analyses. Additionally, SCFAs and common amino acids were detected by GC-MS and UPLC respectively. Enteric changes induced by prion disease affected both structure and abundances of the gut microbiota. The gut microbiota of infected mice displayed greater numbers of Proteobacteria and less Saccharibacteria at the phylum level and more Lactobacillaceae and Helicobacteraceae and less Prevotellaceae and Ruminococcaceae at the family level. A total of 145 fecal metabolites were found to be significantly different in prion infection, and most (114) of these were lipid metabolites. Using KEGG pathway enrichment analysis, we found that 3 phosphatidylcholine (PC) compounds significantly decreased and 4 hydrophobic bile acids significantly increased. Decreases of 8 types of short-chain acids (SCFAs) and increases of Cys and Tyr and decreases of His, Trp, and Arg were observed in prion infection. Correlation analysis indicated that the gut microbiota changes observed in our study may have been the shared outcome of prion disease. These findings suggest that prion disease can cause significant shifts in the gut microbiota. Certain bacterial taxa can then respond to the resulting change to the enteric environment by causing dramatic shifts in metabolite levels. Our data highlight the health impact of the gut microbiota and related metabolites in prion disease.


Assuntos
Bactérias/patogenicidade , Disbiose/metabolismo , Microbioma Gastrointestinal/fisiologia , Doenças Priônicas/microbiologia , Animais , Ácidos e Sais Biliares/análise , Disbiose/microbiologia , Fezes/química , Fezes/microbiologia , Feminino , Metabolômica/métodos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética
16.
Sci Rep ; 9(1): 18959, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831766

RESUMO

The development of massively parallel sequencing (MPS) has quickly changed forensic short tandem repeat (STR) genotyping. By providing detailed sequence information, MPS technology may be used as an alternative or additional method to overcome the limitations of capillary electrophoresis-based STR profiling. Most current NGS processes are labour-intensive with regard to library preparation and require high-quality DNA template. In this study, a 16-plex STR typing system (SeqType®R16) was used to achieve direct library preparation without DNA extraction and adaptor ligation. The efficiency of this system was tested in 601 individuals, including 593 old blood samples from the Chinese Han population and eight positive controls. It took approximately 4 hours for library preparation, including blood direct multiplex PCR (1.5 hours), mixing of the product (15 minutes), single tube purification (2 hours) and quantification (15 minutes). The results showed that MPS presented a broader allele range and higher discrimination power. Except for FGA and D19S433, the allele number almost doubled or more than doubled at all complex STR loci and simple STR loci, including D13S317, D16S539, D5S818, and D7S820. The range of discrimination power increased from 0.8008-0.9572 to 0.8401-0.9753, and the culminated matching probability decreased from 1.7 × 10-15 to 1.1 × 10-17.


Assuntos
Povo Asiático/genética , Manchas de Sangue , Genética Forense , Repetições de Microssatélites , Polimorfismo Genético , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino
17.
Front Neurol ; 10: 1155, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781020

RESUMO

It is well-recognized that the gut microbiota (GM) is crucial for gut function, metabolism, and energy cycles. The GM also has effects on neurological outcomes via many mechanisms, such as metabolite production and the gut-brain axis. Emerging evidence has gradually indicated that GM dysbiosis plays a role in several neurological diseases, such as Parkinson's disease (PD), Alzheimer's disease, depression, and multiple sclerosis. Several studies have observed that PD patients generally suffer from gastrointestinal disorders and GM dysbiosis prior to displaying motor symptoms, but the specific link between the GM and PD is not clearly understood. In this review, we aim to summarize what is known regarding the correlation between the GM and PD pathologies, including direct, and indirect evidence.

18.
Cell Death Dis ; 10(10): 710, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551424

RESUMO

Prion diseases caused by the cellular prion protein (PrPC) conversion into a misfolded isoform (PrPSc) are associated with multiple mitochondrial damages. We previously reported mitochondrial dynamic abnormalities and cell death in prion diseases via modulation of a variety of factors. Optic atrophy 1 (OPA1) is one of the factors that control mitochondrial fusion, mitochondrial DNA (mtDNA) maintenance, bioenergetics, and cristae integrity. In this study, we observed downregulation of OPA1 in prion disease models in vitro and in vivo, mitochondria structure damage and dysfunction, loss of mtDNA, and neuronal apoptosis. Similar mitochondria findings were seen in OPA1-silenced un-infected primary neurons. Overexpression of OPA1 not only alleviated prion-induced mitochondrial network fragmentation and mtDNA loss, decrease in intracellular ATP, increase in ADP/ATP ratio, and decrease in mitochondrial membrane potential but also protected neurons from apoptosis by suppressing the release of cytochrome c from mitochondria to cytosol and activation of the apoptotic factor, caspase 3. Our results demonstrated that overexpression of OPA1 alleviates prion-associated mitochondrial network fragmentation and cristae remodeling, mitochondrial dysfunction, mtDNA depletion, and neuronal apoptosis, suggesting that OPA1 may be a novel and effective therapeutic target for prion diseases.


Assuntos
DNA Mitocondrial/metabolismo , GTP Fosfo-Hidrolases/biossíntese , Mitocôndrias/metabolismo , Neurônios/metabolismo , Atrofia Óptica Autossômica Dominante/metabolismo , Doenças Priônicas/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Feminino , GTP Fosfo-Hidrolases/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Doenças Priônicas/genética , Doenças Priônicas/patologia , Transfecção
19.
Front Neurol ; 10: 645, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293496

RESUMO

Background: The current diagnosis method for Creutzfeldt-Jakob disease (CJD) is post-mortem examination, so early detection of CJD has been historically problematic. Auxiliary detection of CJD based on changes in levels of components of the cerebrospinal fluid (CSF) has become a focus of research. In other neurodegenerative diseases such as Alzheimer's disease (AD), cell-free mitochondrial DNA (mtDNA) in the CSF of patients may serve as a biomarker that could facilitate early diagnosis and studies of the mechanisms underlying the disease. Methods: In this study, the cell-free mitochondrial DNA in the CSF of patients with sCJD and control patients was compared by digital droplet PCR. Results: The cell-free mitochondrial DNA copy number in the CSF of sCJD patients was significantly increased in comparison with that of the control group, and this difference was pathologically related to CJD. Conclusion: Therefore, we speculate that changes in cerebrospinal fluid mitochondrial DNA copy number play an important role in the study of CJD mechanism and diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...