Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Adv Healthc Mater ; : e2402376, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373278

RESUMO

Overproduction of reactive oxygen species (ROS) during reperfusion in ischemic stroke (IS) severely impedes neuronal survival and results in high rates of morbidity and disability. The effective blood-brain barrier (BBB) penetration and brain delivery of antioxidative agents remain the biggest challenge in treating ischemic reperfusion-induced cerebrovascular and neural injury. In this study, a metal-organic framework (MOF) nanozyme (MIL-101-NH2(Fe/Cu)) with ROS scavenging activities to encapsulate neuroprotective agent rapamycin is fabricated and decorating the exterior with BBB-targeting protein ligands (transferrin), thereby realizing enhanced drug retention and controlled release within ischemic lesions for the synergistic treatment of IS. Through the receptor-mediated transcellular pathway, the transferrin-coated MOF nanoparticles achieved efficient transport across the BBB and targeted accumulation at the cerebral ischemic injury site of mice with middle cerebral artery occlusion/reperfusion (MCAO/R), wherein the nanocarrier exhibited catalytic activities of ROS decomposition into O2 and H2O2-responsive rapamycin release. By its BBB-targeting, antioxidative, anti-inflammatory, and antiapoptotic properties, the MOF nanosystem addressed multiple pathological factors of IS and realized remarkable neuroprotective effects, leading to the substantial reduction of cerebral infarction volume and accelerated recovery of nerve functions in the MCAO/R mouse model. This MOF-based nanomedicine provides valuable design principles for effective IS therapy with multi-mechanism synergies.

2.
Adv Food Nutr Res ; 112: 385-433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39218507

RESUMO

BACKGROUND: Precision nutrition, a personalized nutritional supplementation model, is widely acknowledged for its significant impact on human health. Nevertheless, challenges persist in the advancement of precision nutrition, including consumer dietary behaviors, nutrient absorption, and utilization. Thus, the exploration of effective strategies to enhance the efficacy of precision nutrition and maximize its potential benefits in dietary interventions and disease management is imperative. SCOPE AND APPROACH: The primary objective of this comprehensive review is to synthesize and assess the latest technical approaches and future prospects for achieving precision nutrition, while also addressing the existing constraints in this field. The role of delivery systems is pivotal in the realization of precision nutrition goals. This paper outlines the potential applications of delivery systems in precision nutrition and highlights key considerations for their design and implementation. Additionally, the review offers insights into the evolving trends in delivery systems for precision nutrition, particularly in the realms of nutritional fortification, specialized diets, and disease prevention. KEY FINDINGS AND CONCLUSIONS: By leveraging computer data collection, omics, and metabolomics analyses, this review scrutinizes the lifestyles, dietary patterns, and health statuses of diverse organisms. Subsequently, tailored nutrient supplementation programs are devised based on individual organism profiles. The utilization of delivery systems enhances the bioavailability of functional compounds and enables targeted delivery to specific body regions, thereby catering to the distinct nutritional requirements and disease prevention needs of consumers, with a particular emphasis on special populations and dietary preferences.


Assuntos
Medicina de Precisão , Humanos , Suplementos Nutricionais , Estado Nutricional , Alimentos Fortificados , Alimento Funcional
3.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39248623

RESUMO

Meter reading recognition is an important link for robots to complete inspection tasks. To solve the problems of low detection accuracy and inaccurate localization of current meter reading recognition algorithms, the YOLOV7-SSWD (YOLOV7-SiLU-SimAM-Wise-IoU-DyHeads) model is proposed, a novel detection model based on the multi-head attention mechanism, which is improved on the YOLOV7-Tiny model. First, the Wise-IoU loss function is used to solve the problem of sample quality imbalance and improve the model's detection accuracy. Second, a new convolutional block is constructed using the SiLU activation function and applied to the YOLOV7-Tiny model to enhance the model's generalization ability. The dynamic detection header is then built as the header of YOLOV7-Tiny, which realizes the fusion of multi-scale feature information and improves the target recognition performance. Finally, we introduce SimAM to improve the feature extraction capability of the network. In this paper, the importance of each component is fully verified by ablation experiments and comparative analysis. The experiments showed that the mAP and F1-scores of the YOLOV7-SSWD model reached 89.8% and 0.84. Compared with the original network, the mAP increased by 8.1% and the F1-scores increased by 0.1. The YOLOV7-SSWD algorithm has better localization and recognition accuracy and provides a reference for deploying inspection robots to perform automatic inspections.

4.
J Crohns Colitis ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279209

RESUMO

BACKGROUND AND AIMS: Human studies suggest that a high intake of polyunsaturated fatty acid (PUFA) is associated with an increased risk of inflammatory bowel disease (IBD). PUFA is highly prone to oxidation. To date, it is unclear whether unoxidized or oxidized PUFA is involved in the development of IBD. Here, we aim to compare the effects of unoxidized PUFA vs. oxidized PUFA on the development of IBD and associated colorectal cancer. METHODS: We evaluated the effects of unoxidized and oxidized PUFA on dextran sodium sulfate (DSS)- and IL-10 knockout-induced colitis, and azoxymethane (AOM)/DSS-induced colon tumorigenesis in mice. Additionally, we studied the roles of gut microbiota and Toll-like receptor 4 (TLR4) signaling involved. RESULTS: Administration of a diet containing oxidized PUFA, at human consumption-relevant levels, increases the severity of colitis and exacerbates the development of colitis-associated colon tumorigenesis in mice. Conversely, a diet rich in unoxidized PUFA doesn't promote colitis. Furthermore, oxidized PUFA worsens colitis-associated intestinal barrier dysfunction and leads to increased bacterial translocation, and it fails to promote colitis in Toll-like receptor 4 (TLR4) knockout mice. Finally, oxidized PUFA alters the diversity and composition of gut microbiota, and it fails to promote colitis in mice lacking the microbiota. CONCLUSIONS: These results support that oxidized PUFA promotes the development of colitis and associated tumorigenesis in mouse models via TLR4- and gut microbiota-dependent mechanisms. Our findings highlight the potential need to update regulation policies and industrial standards for oxidized PUFA levels in food.

5.
Biomimetics (Basel) ; 9(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39329550

RESUMO

Honeycomb plates, due to their multi-cavity structure, exhibit excellent mechanical properties and sound insulation. Previous studies have demonstrated that altering the cell size and arrangement of honeycomb structures impacts their acoustic performance. Based on these findings, this study developed a wallboard structure with enhanced sound insulation by filling the cavities with paper fiber/cement facesheets and designing a stacked core structure. Through the reverberation chamber-anechoic chamber sound insulation experiment under 100-6300 Hz excitation and conducting orthogonal experiments from three dimensions, it was found that: (1) Compared to no filling, the filling with straw and glazed hollow bead can increase the sound transmission loss (STL) by more than 50% in the frequency bandwidth above 2000 Hz. This indicates that both types of fillings can significantly enhance the sound insulation performance of the honeycomb structure without a significant increase in economic costs. (2) The increase in paper fiber/cement facesheets improves the STL across the entire experimental bandwidth, with a maximum improvement exceeding 70%. This structural design not only offers superior sound insulation performance but also better suits practical engineering applications. (3) Increasing the number of core stacking units (from one to three), taking straw-filled paper honeycomb-core wallboards as an example, effectively increased the STL bandwidth. (4) This test enriches the application of honeycomb plates in sound insulation. Introducing fiber paper fiber/cement facesheets and eco-friendly, low-cost straw improves sound insulation and enhances the strength of honeycomb, making them more suitable for construction, particularly as non-load-bearing structures.

6.
mBio ; 15(9): e0138524, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39162560

RESUMO

Infection with respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract disease in young children and older people. Despite intensive efforts over the past few decades, no direct-acting small-molecule agents against RSV are available. Most small-molecule candidates targeting the RSV fusion (F) protein pose a considerable risk of inducing drug-resistant mutations. Here, we explored the in vitro and in vivo virological properties of the K394R variant, a cross-resistant mutant capable of evading multiple RSV fusion inhibitors. Our results demonstrated that the K394R variant is highly fusogenic in vitro and more pathogenic than the parental strain in vivo. The small molecule (2E,2'E)-N,N'-((1R,2S,3S)-3-hydroxycyclohexane-1,2-diyl)bis(3-(2-bromo-4-fluorophenyl) acrylamide) (CL-A3-7), a structurally optimized compound derived from a natural caffeoylquinic acid derivative, substantially reduced in vitro and in vivo infections of both wild-type RSV and the K394R variant. Mechanistically, CL-A3-7 significantly inhibited virus-cell fusion during RSV entry by blocking the interaction between the viral F protein and the cellular insulin-like growth factor 1 receptor (IGF1R). Collectively, these results indicate severe disease risks caused by the K394R variant and reveal a new anti-RSV mechanism to overcome K394R-associated resistance. IMPORTANCE: Respiratory syncytial virus (RSV) infection is a major public health concern, and many small-molecule candidates targeting the viral fusion (F) protein are associated with a considerable risk of inducing drug-resistant mutations. This study investigated virological features of the K394R variant, a mutant strain conferring resistance to multiple RSV fusion inhibitors. Our results demonstrated that the K394R variant is highly fusogenic in cell cultures and more pathogenic than the parental strain in mice. The small-molecule inhibitor CL-A3-7 substantially reduced in vitro and in vivo infections of both wild-type RSV and the K394R variant by blocking the interaction of viral F protein with its cellular receptor, showing a new mechanism of action for small-molecules to inhibit RSV infection and overcome K394R-associated resistance.


Assuntos
Antivirais , Farmacorresistência Viral , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Proteínas Virais de Fusão , Internalização do Vírus , Internalização do Vírus/efeitos dos fármacos , Animais , Humanos , Antivirais/farmacologia , Farmacorresistência Viral/genética , Farmacorresistência Viral/efeitos dos fármacos , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Proteínas Virais de Fusão/antagonistas & inibidores , Camundongos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/fisiologia , Camundongos Endogâmicos BALB C , Linhagem Celular , Feminino
7.
BMC Genomics ; 25(1): 699, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020298

RESUMO

BACKGROUND: Cassava is one of three major potato crops and the sixth most important food crop globally. Improving yield remains a primary aim in cassava breeding. Notably, plant height significantly impacts the yield and quality of crops; however, the mechanisms underlying cassava plant height development are yet to be elucidated. RESULTS: In this study, we investigated the mechanisms responsible for cassava plant height development using phenotypic, anatomical, and transcriptomic analyses. Phenotypic and anatomical analysis revealed that compared to the high-stem cassava cultivar, the dwarf-stem cassava cultivar exhibited a significant reduction in plant height and a notable increase in internode tissue xylem area. Meanwhile, physiological analysis demonstrated that the lignin content of dwarf cassava was significantly higher than that of high cassava. Notably, transcriptome analysis of internode tissues identified several differentially expressed genes involved in cell wall synthesis and expansion, plant hormone signal transduction, phenylpropanoid biosynthesis, and flavonoid biosynthesis between the two cassava cultivars. CONCLUSIONS: Our findings suggest that internode tissue cell division, secondary wall lignification, and hormone-related gene expression play important roles in cassava plant height development. Ultimately, this study provides new insights into the mechanisms of plant height morphogenesis in cassava and identifies candidate regulatory genes associated with plant height that can serve as valuable genetic resources for future crop dwarfing breeding.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Manihot , Manihot/genética , Manihot/crescimento & desenvolvimento , Manihot/metabolismo , Fenótipo , Transcriptoma , Lignina/metabolismo , Lignina/biossíntese
8.
J Transl Med ; 22(1): 655, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004706

RESUMO

Neoadjuvant chemotherapy (NACT) is a viable therapeutic option for women diagnosed locally advanced cervical cancer (LACC). However, the factors influencing pathological response are still controversial. We collected pair specimens of 185 LACC patients before and after receiving NACT and conducted histological evaluation. 8 fresh tissues pre-treatment were selected from the entire cohort to conducted immune gene expression profiling. A novel pathological grading system was established by comprehensively assessing the percentages of viable tumor, inflammatory stroma, fibrotic stroma, and necrosis in the tumor bed. Then, 185 patients were categorized into either the good pathological response (GPR) group or the poor pathological response (PPR) group post-NACT, with 134 patients (72.4%, 134/185) achieving GPR. Increasing tumor-infiltrating lymphocytes (TILs) and tumor-infiltrating lymphocytes volume (TILV) pre-treatment were correlated with GPR, with TILV emerging as an independent predictive factor for GPR. Additionally, CIBERSORT analysis revealed noteworthy differences in the expression of immune makers between cPR and non-cPR group. Furthermore, a significantly heightened density of CD8 + T cells and a reduced density of FOXP3 + T cells were observed in GPR than PPR. Importantly, patients exhibiting GPR or inflammatory type demonstrated improved overall survival and disease-free survival. Notably, stromal type was an independent prognostic factor in multivariate analysis. Our study indicates the elevated TILV in pre-treatment specimens may predict a favorable response to NACT, while identifying stromal type in post-treatment specimens as an independent prognostic factor. Moreover, we proposed this pathological grading system in NACT patients, which may offer a more comprehensive understanding of treatment response and prognosis.


Assuntos
Linfócitos do Interstício Tumoral , Terapia Neoadjuvante , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/tratamento farmacológico , Pessoa de Meia-Idade , Linfócitos do Interstício Tumoral/imunologia , Adulto , Resultado do Tratamento , Idoso , Intervalo Livre de Doença
9.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38841734

RESUMO

Chronic inflammation-induced diseases (CID) are the dominant cause of death worldwide, contributing to over half of all global deaths. Sulforaphane (SFN) derived from cruciferous vegetables has been extensively studied for its multiple functional benefits in alleviating CID. This work comprehensively reviewed the biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications of SFN and its potential mechanisms against CID (e.g., cancer, obesity, type 2 diabetes, et al.), and neurological disorders based on a decade of research. SFN exerts its biological functions through the hydrolysis of glucosinolates by gut microbiota, and exhibits rapid metabolism and excretion characteristics via metabolization of mercapturic acid pathway. Microencapsulation is an important way to improve the stability and targeted delivery of SFN. The health benefits of SNF against CID are attributed to the multiple regulatory mechanisms including modulating oxidative stress, inflammation, apoptosis, immune response, and intestinal homeostasis. The clinical applications of SFN and related formulations show promising potential; however, further exploration is required regarding the sources, dosages, toxicity profiles, and stability of SFN. Together, SFN is a natural product with great potential for development and application, which is crucial for the development of functional food and pharmaceutical industries.

10.
Food Res Int ; 188: 114508, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823847

RESUMO

Procyanidins, which are oligomerized flavan-3-ols with a polyphenolic structure, are bioactive substances that exhibit various biological effects. However, the relationship between the degree of polymerization (DP) of procyanidins and their bioactivities remains largely unknown. In this study, the preventive effects of procyanidins with different DP (EC, PB2 and PC1) on glucose improvement and liver lipid deposition were investigated using a high-fat diet/streptozotocin-induced diabetes mouse model. The results demonstrated that all the procyanidins with different DP effectively reduced fasting blood glucose and glucose/insulin tolerance, decreased the lipid profile (total cholesterol, triglyceride, and low-density lipoprotein cholesterol content) in serum and liver tissue as well as the liver oil red staining, indicating the improvement of glucose metabolism, insulin sensitivity and hepatic lipid deposition in diabetic mice. Furthermore, the procyanidins down-regulated expression of glucose regulated 78-kDa protein (GRP78) and C/EBP homologous protein (CHOP), indicating a regulation role of endoplasmic reticulum (ER) stress. The inhibition of ER stress by tauroursodeoxycholic acid (TUDCA) treatment abolished the effects of procyanidins with different DP in PA-induced HepG2 cells, confirming that procyanidins alleviate liver hyperlipidemia through the modulation of ER stress. Molecular docking results showed that EC and PB2 could better bind GRP78 and CHOP. Collectively, our study reveals that the structure of procyanidins, particularly DP, is not directly correlated with the improvement of blood glucose and lipid deposition, while highlighting the important role of ER stress in the bioactivities of procyanidins.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Dieta Hiperlipídica , Chaperona BiP do Retículo Endoplasmático , Metabolismo dos Lipídeos , Fígado , Proantocianidinas , Animais , Proantocianidinas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Células Hep G2 , Humanos , Polimerização , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Simulação de Acoplamento Molecular , Biflavonoides/farmacologia , Camundongos Endogâmicos C57BL , Estreptozocina , Resistência à Insulina , Catequina/farmacologia
11.
Food Chem ; 457: 140137, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908251

RESUMO

This study showed the significantly differences of basic nutrients and metabolite compounds in nine types of beans involved in soybean, mung bean, pea, and common beans. The metabolomics results showed that serval metabolites such as histidine, proline, 3-alanine, and myricetin which could be used to identify different beans. The random forest model showed that amino acid and fatty acid could be used as special indexes to distinguish different types of beans in practice. The different expressed metabolites among different types of beans were involved in various pathways including alanine, aspartate and glutamate metabolism, arginine and proline metabolism, and purine metabolism. The antioxidant activity was significantly different among different types of beans, and the contents of amino acid, coumarin, and polyphenol contributed the antioxidant activities of beans. Together, these results will provide a comprehensive understanding of metabolites in different types of beans and theoretical guideline for the future application of beans.


Assuntos
Antioxidantes , Glycine max , Pisum sativum , Vigna , Antioxidantes/metabolismo , Antioxidantes/química , Glycine max/química , Glycine max/metabolismo , Glycine max/crescimento & desenvolvimento , Pisum sativum/química , Pisum sativum/metabolismo , Vigna/química , Vigna/metabolismo , Vigna/crescimento & desenvolvimento , Aminoácidos/metabolismo , Aminoácidos/análise , Aminoácidos/química , Fabaceae/química , Fabaceae/metabolismo , Metabolômica , Sementes/química , Sementes/metabolismo , Sementes/crescimento & desenvolvimento
12.
Phytochemistry ; 225: 114165, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38815884

RESUMO

Ten C-geranylated flavonoids, along with three known analogues, were isolated from the leaves of Artocarpus communis. The chemical structures of these compounds were unambiguously determined via comprehensive spectroscopic analysis, single-crystal X-ray diffraction experiments, and quantum chemical electronic circular dichroism calculations. Structurally, artocarones A-I (1-9) represent a group of unusual, highly modified C-geranylated flavonoids, in which the geranyl chain is cyclised with the ortho-hydroxy group of flavonoids to form various heterocyclic scaffolds. Notably, artocarones E and G-I (5 and 7-9) feature a 6H-benzo[c]chromene core that is hitherto undescribed in C-geranylated flavonoids. Artocarone J (10) is the first example of C-9-C-16 connected C-geranylated aurone. Meanwhile, the plausible biosynthetic pathways for these rare C-geranylated flavonoids were also proposed. Notably, compounds 1, 2, 4, 8, 11, and 12 exhibited promising in vitro inhibitory activities against respiratory syncytial virus and herpes simplex virus type 1.


Assuntos
Antivirais , Artocarpus , Flavonoides , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Artocarpus/química , Antivirais/química , Antivirais/farmacologia , Antivirais/isolamento & purificação , Estrutura Molecular , Herpesvirus Humano 1/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Folhas de Planta/química , Relação Estrutura-Atividade , Modelos Moleculares
13.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L770-L785, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563994

RESUMO

Novel therapies are needed for bronchopulmonary dysplasia (BPD) because no effective treatment exists. Mesenchymal stromal cell extracellular vesicles (MSC-sEVs) have therapeutic efficacy in a mouse pup neonatal hyperoxia BPD model. We tested the hypothesis that MSC-sEVs will improve lung functional and structural development in mechanically ventilated preterm lambs. Preterm lambs (∼129 days; equivalent to human lung development at ∼28 wk gestation) were exposed to antenatal steroids, surfactant, caffeine, and supported by mechanical ventilation for 6-7 days. Lambs were randomized to blinded treatment with either MSC-sEVs (human bone marrow MSC-derived; 2 × 1011 particles iv; n = 8; 4 F/4 M) or vehicle control (saline iv; 4 F/4 M) at 6 and 78 h post delivery. Physiological targets were pulse oximetry O2 saturation 90-94% ([Formula: see text] 60-90 mmHg), [Formula: see text] 45-60 mmHg (pH 7.25-7.35), and tidal volume 5-7 mL/kg. MSC-sEVs-treated preterm lambs tolerated enteral feedings compared with vehicle control preterm lambs. Differences in weight patterns were statistically significant. Respiratory severity score, oxygenation index, A-a gradient, distal airspace wall thickness, and smooth muscle thickness around terminal bronchioles and pulmonary arterioles were significantly lower for the MSC-sEVs group. S/F ratio, radial alveolar count, secondary septal volume density, alveolar capillary surface density, and protein abundance of VEGF-R2 were significantly higher for the MSC-sEVs group. MSC-sEVs improved respiratory system physiology and alveolar formation in mechanically ventilated preterm lambs. MSC-sEVs may be an effective and safe therapy for appropriate functional and structural development of the lung in preterm infants who require mechanical ventilation and are at risk of developing BPD.NEW & NOTEWORTHY This study focused on potential treatment of preterm infants at risk of developing bronchopulmonary dysplasia (BPD), for which no effective treatment exists. We tested treatment of mechanically ventilated preterm lambs with human mesenchymal stromal cell extracellular vesicles (MSC-sEVs). The results show improved respiratory gas exchange and parenchymal growth of capillaries and epithelium that are necessary for alveolar formation. Our study provides new mechanistic insight into potential efficacy of MSC-sEVs for preterm infants at risk of developing BPD.


Assuntos
Animais Recém-Nascidos , Displasia Broncopulmonar , Vesículas Extracelulares , Pulmão , Células-Tronco Mesenquimais , Respiração Artificial , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Células-Tronco Mesenquimais/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Ovinos , Displasia Broncopulmonar/patologia , Displasia Broncopulmonar/terapia , Displasia Broncopulmonar/metabolismo , Humanos , Feminino
14.
High Alt Med Biol ; 25(3): 223-225, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38682426

RESUMO

Xiong, Shiqiang, Jun Hou, Haixia Yang, Meiting Gong, Xin Ma, Xuhu Yang, Hongyang Zhang, Yao Ma, Liang Gao, and Haifeng Pei. The profiles of venous thromboembolism at different high altitudes High Alt Med Biol. 25:223-225, 2024.-This study investigated the incidence of venous thromboembolism (VTE) in high altitude (HA) and very HA areas. Patients with deep vein thrombosis (DVT) or pulmonary embolism (PE) diagnosed between 2004 and 2022 in Yecheng, China, were retrospectively analyzed. The results showed that patients with PE at very HA had a higher risk of lower extremity DVT (OR 16.3 [95% CI 1.2-223.2], p = 0.036), than those at HA, especially in the early stages of very HA entry, and the harsh environment of very HA further exacerbated the risk of VTE. These findings emphasize the higher risk of PE development in very HA and the need for enhanced prevention and treatment in this area.


Assuntos
Altitude , Embolia Pulmonar , Tromboembolia Venosa , Trombose Venosa , Humanos , Estudos Retrospectivos , Pessoa de Meia-Idade , Feminino , Masculino , China/epidemiologia , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/etiologia , Embolia Pulmonar/epidemiologia , Embolia Pulmonar/etiologia , Adulto , Incidência , Fatores de Risco , Trombose Venosa/epidemiologia , Trombose Venosa/etiologia , Idoso , Extremidade Inferior/irrigação sanguínea
15.
Fitoterapia ; 175: 105982, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685512

RESUMO

A phytochemical investigation on the buds of edible medicinal plant, Eugenia carvophyllata, led to the discovery of seven new compounds, caryophones A-G (1-7), along with two biogenetically-related known ones, 2-methoxy-7-methyl-1,4-naphthalenedione (8) and eugenol (9). Compounds 1-3 represent the first examples of C-5-C-1' connected naphthoquinone-monoterpene adducts with a new carbon skeleton. Compounds 4-7 are a class of novel neolignans with unusual linkage patterns, in which the C-9 position of one phenylpropene unit coupled with the aromatic core of another phenylpropene unit. The chemical structures of the new compounds were determined based on extensive spectroscopic analysis, X-ray diffraction crystallography, and quantum-chemical calculation. Among the isolates, compounds (-)-2, 3, 6, and 9 showed significant in vitro inhibitory activities against respiratory syncytial virus (RSV)-induced nitric oxide (NO) production in RAW264.7 cells.


Assuntos
Anti-Inflamatórios , Eugenia , Lignanas , Naftoquinonas , Óxido Nítrico , Compostos Fitoquímicos , Camundongos , Células RAW 264.7 , Animais , Óxido Nítrico/metabolismo , Estrutura Molecular , Lignanas/farmacologia , Lignanas/isolamento & purificação , Lignanas/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/química , Naftoquinonas/farmacologia , Naftoquinonas/isolamento & purificação , Naftoquinonas/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Eugenia/química , Vírus Sinciciais Respiratórios/efeitos dos fármacos , China
16.
Sci Rep ; 14(1): 8452, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605119

RESUMO

Spindle component 25 (SPC25) is one of the four proteins that make up the nuclear division cycle 80 (NDC80) complex, the other three components being Ndc80p, Nuf2p, and spindle component 24. Deregulation of the components of this complex can lead to uncontrolled proliferation and reduced apoptosis. However, the prognostic and immunotherapeutic value of SPC25 in pan-cancer remains unclear. Data from the UCSC Xena, TIMER2.0, and TCGA were analyzed to investigate the overall differential expression of SPC25 across multiple cancer types. The survival prognosis, clinical features, and genetic changes of SPC25 were also evaluated. Finally, the relationship between SPC25 and immunotherapy response was further explored through Gene Set Enrichment Analysis, tumor microenvironment, and immune cell infiltration. The transcription and protein expression of SPC25 were significantly increased in most cancer types and had prognostic value for the survival of certain cancer patients such as ACC, CESC, KIRC, KIRP, LIHC, LUAD, MESO, STAD, THYM, and UCEC. In some cancer types, SPC25 expression was also markedly correlated with the TMB, MSI, and clinical characteristics. Gene Set Enrichment Analysis showed that SPC25 was significantly associated with immune-related pathways. In addition, it was also confirmed that the expression level of SPC25 was strongly correlated with immune cell infiltration, immune checkpoint genes, immune regulatory genes, Ferroptosis-related genes, Cuproptosis-related genes, and lactate metabolism-related genes. This study comprehensively explored the potential value of SPC25 as a prognostic and immunotherapeutic marker for pan-cancer, providing new direction and evidence for cancer therapy.


Assuntos
Imunoterapia , Neoplasias , Humanos , Prognóstico , Apoptose , Núcleo Celular , Neoplasias/genética , Neoplasias/terapia , Microambiente Tumoral/genética
17.
Curr Res Food Sci ; 8: 100715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511155

RESUMO

Plant polyphenols play an essential role in human health. The bioactivity of polyphenols depends not only on their content but also on their bioavailability in food. The processing techniques, especially non-thermal processing, improve the retention and bioavailability of polyphenolic substances. However, there are limited studies summarizing the relationship between non-thermal processing, the bioavailability of polyphenols, and potential mechanisms. This review aims to summarize the effects of non-thermal processing techniques on the content and bioavailability of polyphenols in fruits and vegetables. Importantly, the disruption of cell walls and membranes, the inhibition of enzyme activities, free radical reactions, plant stress responses, and interactions of polyphenols with the food matrix caused by non-thermal processing are described. This study aims to enhance understanding of the significance of non-thermal processing technology in preserving the nutritional properties of dietary polyphenols in plant-based foods. It also offers theoretical support for the contribution of non-thermal processing technology in improving food nutrition.

18.
J Agric Food Chem ; 72(12): 6454-6462, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477968

RESUMO

In this study, the phenomenon of the stability-activity trade-off, which is increasingly recognized in enzyme engineering, was explored. Typically, enhanced stability in enzymes correlates with diminished activity. Utilizing Rosa roxburghii copper-zinc superoxide dismutase (RrCuZnSOD) as a model, single-site mutations were introduced based on a semirational design derived from consensus sequences. The initial set of mutants was selected based on activity, followed by combinatorial mutation. This approach yielded two double-site mutants, D25/A115T (18,688 ± 206 U/mg) and A115T/S135P (18,095 ± 1556 U/mg), exhibiting superior enzymatic properties due to additive and synergistic effects. These mutants demonstrated increased half-lives (T1/2) at 80 °C by 1.2- and 1.6-fold, respectively, and their melting temperatures (Tm) rose by 3.4 and 2.5 °C, respectively, without any loss in activity relative to the wild type. Via an integration of structural analysis and molecular dynamics simulations, we elucidated the underlying mechanism facilitating the concurrent enhancement of both thermostability and enzymatic activity.


Assuntos
Simulação de Dinâmica Molecular , Engenharia de Proteínas , Estabilidade Enzimática , Temperatura , Sequência Consenso
19.
J Agric Food Chem ; 72(6): 2997-3007, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38300824

RESUMO

Lipid metabolism is closely related to obesity and its complications. Our previous study found that ginsenoside Rk3 (Rk3), a natural bioactive substance derived from ginseng, can effectively alleviate obesity-induced colitis, while its impact on the improvement of the lipid metabolism disorder remains unclear. Here, we demonstrated that Rk3 significantly alleviated inflammation, oxidative stress, and lipid dysregulation in high-fat diet-induced colitis C57BL/6 mice. The potential mechanism by which Rk3 mitigated colon inflammation in the context of obesity may involve the modulation of polyunsaturated fatty acid metabolism with specific attention to n-6 fatty acids, linoleic acid, and arachidonic acid. Rk3 intervention markedly reduced the production of pro-inflammatory factors (PGE2, PGD2, TXB2, HETE, and HODE) by inhibiting cyclooxygenase and lipoxygenase pathways, while enhancing the production of anti-inflammatory factors (EET and diHOME) via cytochrome P450 pathways. Our findings suggest that Rk3 is a potential anti-inflammatory natural drug that can improve obesity-induced intestinal inflammation by regulating lipid metabolism.


Assuntos
Colite , Ginsenosídeos , Metabolismo dos Lipídeos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/genética , Inflamação , Colite/tratamento farmacológico , Colite/genética , Anti-Inflamatórios
20.
Proc Natl Acad Sci U S A ; 121(7): e2314085121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38330013

RESUMO

Cancer therapy, including immunotherapy, is inherently limited by chronic inflammation-induced tumorigenesis and toxicity within the tumor microenvironment. Thus, stimulating the resolution of inflammation may enhance immunotherapy and improve the toxicity of immune checkpoint inhibition (ICI). As epoxy-fatty acids (EpFAs) are degraded by the enzyme soluble epoxide hydrolase (sEH), the inhibition of sEH increases endogenous EpFA levels to promote the resolution of cancer-associated inflammation. Here, we demonstrate that systemic treatment with ICI induces sEH expression in multiple murine cancer models. Dietary omega-3 polyunsaturated fatty acid supplementation and pharmacologic sEH inhibition, both alone and in combination, significantly enhance anti-tumor activity of ICI in these models. Notably, pharmacological abrogation of the sEH pathway alone or in combination with ICI counter-regulates an ICI-induced pro-inflammatory and pro-tumorigenic cytokine storm. Thus, modulating endogenous EpFA levels through dietary supplementation or sEH inhibition may represent a unique strategy to enhance the anti-tumor activity of paradigm cancer therapies.


Assuntos
Epóxido Hidrolases , Neoplasias , Camundongos , Humanos , Animais , Epóxido Hidrolases/metabolismo , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Neoplasias/terapia , Imunoterapia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...