Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 514
Filtrar
1.
Medicine (Baltimore) ; 103(38): e39410, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39312358

RESUMO

To observe the clinical efficacy and safety of vancomycin intravenous drip combined with vancomycin intrathecal injection in the treatment of intracranial infection after severe brain injury surgery. From January 2020 to June 2022, 80 patients with intracranial infection after severe brain injury surgery were selected and randomly divided into 2 subgroups; there were 40 patients in each subgroup. All patients were treated with vancomycin. The control subgroup was medicated with intravenous drip, and the observation subgroup was treated through 2 channels (intravenous drip + intrathecal injection), with a course of 7 days. The clinical efficacy, intracranial pressure, infection control time, routine indexes of cerebrospinal fluid (white blood cell count [WBC], glucose content [Glu], and total protein content [Pro]) and the incidence of adverse reactions were contrasted between the 2 subgroups. Versus the control subgroup, the total effective rate in the observation subgroup was notably higher (95.00% vs 77.50%). After treatment, aiming at the intracranial pressure and infection control time, versus the control subgroup (146.20 ±â€…22.37) mmH2O and (9.86 ±â€…1.62) days, the observation subgroup were (125.43 ±â€…18.5) mmH2O and (7.35 ±â€…1.57) days respectively, which were notably lower. After treatment, versus the control subgroup, the concentrations of WBC and Pro in cerebrospinal fluid in the observation subgroup were lower, and the content of Glu was higher. There was no statistical distinction in the incidence of adverse reactions between the 2 subgroups (17.50% vs 10.00%). Two-channel administration of vancomycin can improve the clinical efficacy of internal infection after severe craniocerebral injury, reduce intracranial pressure, and cerebrospinal fluid WBC and Pro levels, and has high safety.


Assuntos
Antibacterianos , Lesões Encefálicas , Vancomicina , Humanos , Vancomicina/administração & dosagem , Vancomicina/uso terapêutico , Masculino , Feminino , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Pessoa de Meia-Idade , Adulto , Lesões Encefálicas/líquido cefalorraquidiano , Injeções Espinhais , Resultado do Tratamento , Pressão Intracraniana/efeitos dos fármacos
2.
Chem Sci ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39246356

RESUMO

Theranostic probes, combining diagnostic and treatment capabilities, have emerged as promising tools in tumor precision medicine. However, existing probes with constant fluorescence and photothermal activity can result in low signal-to-background ratios and phototoxicity. In this study, we introduced CM-Croc, a novel probe comprised of chromene and croconaine, selectively triggered by thiol. CM-Croc exhibited turn-on fluorescence and released croconaine for photothermal therapy. The croconaine moiety possesses high photothermal conversion efficiency up to 55%. Besides, it demonstrated potent activity against various cancer cell lines at low micromolar concentrations, including drug-resistant variants, through enhanced photothermal therapy combined with the ferroptosis effect. What's more, CM-Croc was proved to inhibit the activity of GPX4 to induce ferroptosis. Finally, CM-Croc was demonstrated to be the first croconaine-derived SOP, which targeted tumors and significantly inhibited tumor growth in vivo following intravenous administration with irradiation. This study showed CM-Croc's potential for enhancing tumor precision medicine.

3.
Clin Chem Lab Med ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39238286

RESUMO

This opinion article highlights the critical role of laboratory medicine and emerging technologies in cardiovascular risk reduction through exposome analysis. The exposome encompasses all external and internal exposures an individual faces throughout their life, influencing the onset and progression of cardiovascular diseases (CVD). Integrating exposome data with genetic information allows for a comprehensive understanding of the multifactorial causes of CVD, facilitating targeted preventive interventions. Laboratory medicine, enhanced by advanced technologies such as metabolomics and artificial intelligence (AI), plays a pivotal role in identifying and mitigating these exposures. Metabolomics provides detailed insights into metabolic changes triggered by environmental factors, while AI efficiently processes complex datasets to uncover patterns and associations. This integration fosters a proactive approach in public health and personalized medicine, enabling earlier detection and intervention. The article calls for global implementation of exposome technologies to improve population health, emphasizing the need for robust technological platforms and policy-driven initiatives to seamlessly integrate environmental data with clinical diagnostics. By harnessing these innovative technologies, laboratory medicine can significantly contribute to reducing the global burden of cardiovascular diseases through precise and personalized risk mitigation strategies.

4.
Arch Esp Urol ; 77(7): 760-765, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39238300

RESUMO

BACKGROUND: Tension-free vaginal tape-Abbrevo (TVT-A) and tension-free vaginal tape-Obturator (TVT-O) are the main procedures for the treatment of stress urinary incontinence (SUI) in females. This study investigated the clinical efficacy of TVT-A versus TVT-O for the treatment of SUI in elderly women. METHODS: A retrospective analysis was conducted on 126 cases of SUI in elderly female patients admitted to our hospital from January 2022 to January 2023. The patients were divided into TVT-A group (65 cases) and TVT-O group (61 cases) according to the surgical methods. Follow-up was conducted via outpatient examination and telephone. Perioperative conditions, surgical outcomes, postoperative complications and quality of life were analysed and compared between the two groups. RESULTS: No statistically significant difference in surgical time, intraoperative blood loss, indwelling catheter duration, average hospital days, bladder injury, urethral injury, incision infection, dysuria, cured rate and quality of life was found between the two groups (p > 0.05). The incidence of postoperative groin pain in the TVT-A group was significantly lower than that in the TVT-O group (p < 0.05). CONCLUSIONS: The efficacy of TVT-A and TVT-O in treating SUI in older women is about the same. However, TVT-A is more minimally invasive, safer and has fewer complications.


Assuntos
Slings Suburetrais , Incontinência Urinária por Estresse , Procedimentos Cirúrgicos Urológicos , Humanos , Incontinência Urinária por Estresse/cirurgia , Feminino , Estudos Retrospectivos , Idoso , Resultado do Tratamento , Procedimentos Cirúrgicos Urológicos/métodos , Complicações Pós-Operatórias/epidemiologia , Idoso de 80 Anos ou mais
5.
Angew Chem Int Ed Engl ; : e202414720, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166363

RESUMO

Phase control over cation exchange (CE) reactions has emerged as an important approach for the synthesis of nanomaterials (NMs). Although factors such as crystal structure and morphology have been studied for the phase engineering of CE reactions in NMs, there remains a lack of systematic investigation to reveal the impact factors in heterogeneous materials. Herein, we report a molybdenum disulfide induced phase control method for synthesizing multidimensional Co3S4-MoS2 heteronanostructures (HNs) via cation exchange. MoS2 in parent Cu1.94S-MoS2 HNs are proved to affect the thermodynamics and kinetics of CE reactions, and facilitate the formation of Co3S4-MoS2 HNs with controlled phase. This MoS2 induced phase control method can be extended to other parent HNs with multiple dimensions, which shows its universality. Further, theoretical calculations demonstrate that Co3S4 (111)/MoS2 (001) exhibits a higher adhesion work, providing further evidence that MoS2 enables phase control in the HNs CE reactions, inducing the generation of novel Co3S4-MoS2 HNs. As a proof-of-concept application, the obtained Co3S4-MoS2 heteronanoplates (HNPls) show remarkable performance in hydrogen evolution reactions (HER) under alkaline media. This synthetic methodology provides a unique way to control the crystal structure and fills the gap in the study of heterogeneous materials on CE reaction over phase engineering.

6.
Crit Rev Clin Lab Sci ; : 1-15, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041650

RESUMO

Immunoglobulin G (IgG) and immunoglobulin M (IgM) testing are commonly used to determine infection status. Typically, the detection of IgM indicates an acute or recent infection, while the presence of IgG alone suggests a chronic or past infection. However, relying solely on IgG and IgM antibody positivity may not be sufficient to differentiate acute from chronic infections. This limitation arises from several factors. The prolonged presence of IgM can complicate diagnostic interpretations, and false positive IgM results often arise from antibody cross-reactivity with various antigens. Additionally, IgM may remain undetectable in prematurely collected samples or in individuals who are immunocompromised, further complicating accurate diagnosis. As a result, additional diagnostic tools are required to confirm infection status. Avidity is a measure of the strength of the binding between an antigen and antibody. Avidity-based assays have been developed for various infectious agents, including toxoplasma, cytomegalovirus (CMV), SARS-CoV-2, and avian influenza, and are promising tools in clinical diagnostics. By measuring the strength of antibody binding, they offer critical insights into the maturity of the immune response. These assays are instrumental in distinguishing between acute and chronic or past infections, monitoring disease progression, and guiding treatment decisions. The development of automated platforms has optimized the testing process by enhancing efficiency and minimizing the risk of manual errors. Additionally, the recent advent of real-time biosensor immunoassays, including the label-free immunoassays (LFIA), has further amplified the capabilities of these assays. These advances have expanded the clinical applications of avidity-based assays, making them useful tools for the diagnosis and management of various infectious diseases. This review is structured around several key aspects of IgG avidity in clinical diagnosis, including: (i) a detailed exposition of the IgG affinity maturation process; (ii) a thorough discussion of the IgG avidity assays, including the recently emerged biosensor-based approaches; and (iii) an examination of the applications of IgG avidity in clinical diagnosis. This review is intended to contribute toward the development of enhanced diagnostic tools through critical assessment of the present landscape of avidity-based testing, which allows us to identify the existing knowledge gaps and highlight areas for future investigation.

7.
Nano Lett ; 24(29): 8887-8893, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38984749

RESUMO

The synthesis of transition metal nitrides nanocrystals (TMNs NCs) has posed a significant challenge due to the limited reactivity of nitrogen sources at lower temperatures and the scarcity of available synthesis methods. In this study, we present a novel colloidal synthesis strategy for the fabrication of Cu3N nanorods (NRs). It is found that the trace oxygen (O2) plays an important role in the synthesis process. And a new mechanism for the formation of Cu3N is proposed. Subsequently, by employing secondary lateral epitaxial growth, the Cu3N-Cu2O heteronanostructures (HNs) can be prepared. The Cu3N NRs and Cu3N-Cu2O HNs were evaluated as precursor electrocatalysts for the CO2 reduction reaction (CO2RR). The Cu3N-Cu2O HNs demonstrate remarkable selectivity and stability with ethylene (C2H4) Faradaic efficiency (FE) up to 55.3%, surpassing that of Cu3N NRs. This study provides innovative insights into the reaction mechanism of colloidal synthesis of TMNs NCs and presents alternative options for designing cost-effective electrocatalysts to achieve carbon neutrality.

8.
ACS Appl Mater Interfaces ; 16(28): 35874-35886, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38954798

RESUMO

To effectively solve the problem of significant loss of transplanted cells caused by thrombosis during cell transplantation, this study simulates the human fibrinolytic system and combines metabolic oligosaccharide engineering with strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry to construct a cell surface with fibrinolytic activity. First, a copolymer (POL) of oligoethylene glycol methacrylate (OEGMA) and 6-amino-2-(2-methylamido)hexanoic acid (Lys) was synthesized by reversible addition-fragmentation chain transfer (RAFT) copolymerization, and the dibenzocyclooctyne (DBCO) functional group was introduced into the side chain of the copolymer through an active ester reaction, resulting in a functionalized copolymer DBCO-PEG4-POL with ε-lysine ligands. Then, azide functional groups were introduced onto the surface of HeLa model cells through metabolic oligosaccharide engineering, and DBCO-PEG4-POL was further specifically modified onto the surface of HeLa cells via the SPAAC "click" reaction. In vitro investigations revealed that compared with unmodified HeLa cells, modified cells not only resist the adsorption of nonspecific proteins such as fibrinogen and human serum albumin but also selectively bind to plasminogen in plasma while maintaining good cell viability and proliferative activity. More importantly, upon the activation of adsorbed plasminogen into plasmin, the modified cells exhibited remarkable fibrinolytic activity and were capable of promptly dissolving the primary thrombus formed on their surfaces. This research not only provides a novel approach for constructing transplantable cells with fibrinolytic activity but also offers a new perspective for effectively addressing the significant loss of transplanted cells caused by thrombosis.


Assuntos
Química Click , Reação de Cicloadição , Fibrinólise , Oligossacarídeos , Humanos , Células HeLa , Oligossacarídeos/química , Fibrinólise/efeitos dos fármacos , Engenharia Metabólica , Azidas/química , Polietilenoglicóis/química , Metacrilatos/química , Alcinos/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Plasminogênio/química , Plasminogênio/metabolismo , Propriedades de Superfície
9.
Am J Clin Pathol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39066575

RESUMO

OBJECTIVES: Urine drug testing (UDT) is a critical tool used in medical, forensic, and occupational settings, but interpreting results can be challenging. We performed a study to assess the ability of health care professionals to interpret UDT results accurately. METHODS: In total, 911 clinical and laboratory professionals in the United States and Canada responded to a survey with questions gauging expertise in UDT interpretation. Responses were analyzed to identify knowledge gaps. RESULTS: Toxicologists and laboratory PhD scientists performed well, with means of 4.82 and 4.63 questions answered correctly (out of 6 possible), respectively. Physicians specializing in pathology, emergency medicine, primary care, and internal medicine, however, displayed concerning knowledge gaps, as did laboratorians with nondoctoral degrees. Experience and training correlated with interpretation accuracy. Identification of simulated compliance as well as understanding opioid exposure, metabolism, and immunoassay cross-reactivity were among the most clinically significant knowledge gaps. More than 30% of survey respondents indicated that they would seek UDT information from the internet or peers rather than clinical or laboratory experts. CONCLUSIONS: The study highlighted the need for targeted education and better collaboration between clinical and laboratory experts and other health care professionals to ensure that when physicians order UDT, they can accurately interpret results and reduce harm.

10.
Int J Biol Macromol ; 275(Pt 1): 133594, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960258

RESUMO

Exosomal miRNAs have vital functions in mediating intercellular communication as well as tumor occurrence and development. Thus, our research was aimed at exploring the regulatory mechanisms of exosomal miR-130b-3p/DEP domain containing 1 (DEPDC1)/transforming growth factor-ß (TGF-ß) signaling pathway in non-small cell lung cancer (NSCLC). Here we indicated that exosomal miR-130b-3p expression decreased in the serum of NSCLC patients, and it was of significant diagnostic value. Moreover, elevated miR-130b-3p levels suppressed the proliferation and migration of NSCLC cells, and enhanced their apoptosis. Conversely, miR-130b-3p down-regulation led to an opposite effect. As the upstream of DEPDC1, miR-130b-3p directly bound to 3'UTR in DEPDC1 to regulate its expression. DEPDC1 levels affected the proliferation, migration, and apoptosis of NSCLC cells via TGF-ß signaling pathway. Exosomal miR-130b-3p was highly expressed in BEAS-2B cells, besides, BEAS-2B cells transferred exosomal miR-130b-3p to NSCLC cells. Finally, exosomal miR-130b-3p suppressed NSCLC cell growth and migration, promoted their apoptosis via TGF-ß signaling pathway by decreasing DEPDC1 expression, and suppressed epithelial-mesenchymal transition (EMT) in NSCLC cells. In conclusion, exosomal miR-130b-3p has the potential to be a predictive biomarker for NSCLC, thereby stimulating the exploration of diagnostic and therapeutic approaches targeting NSCLC.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Proliferação de Células , Exossomos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Proliferação de Células/genética , Movimento Celular/genética , Linhagem Celular Tumoral , Apoptose/genética , Exossomos/metabolismo , Exossomos/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Masculino , Feminino , Metástase Neoplásica , Pessoa de Meia-Idade
11.
Opt Express ; 32(12): 21855-21865, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859529

RESUMO

A gas detection method based on CH3NH3PbI3 (MAPbI3) and poly (3,4-ethylenedioxythiophene): poly (4-styrene sulfonate) (PEDOT:PSS) composite photodetectors (PDs) is proposed. The operation of the PD primarily relies on the photoelectric effect within the visible light band. Our study involves constructing a gas detection system based on tunable diode laser spectroscopy (TDLAS) and MAPbI3/PEDOT:PSS PD, and O2 was selected as the target analyte. The system has achieved a minimum detection limit (MDL) of 0.12% and a normalized noise equivalent absorption coefficient (NNEA) of 8.83 × 10-11 cm-1⋅W⋅Hz-1/2. Furthermore, the Allan deviation analysis results indicate that the system can obtain sensitivity levels as low as 0.058% over an averaging time of 328 seconds. This marks the first use of MAPbI3/PEDOT:PSS PD in gas detection based on TDLAS. Despite the detector's performance leaves much to be desired, this innovation offers a new approach to developing spectral based gas detection system.

12.
Curr Pharm Des ; 30(24): 1912-1926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835123

RESUMO

INTRODUCTION: Age-related macular degeneration (AMD) is one of the common diseases that cause vision loss in the elderly, and oxidative stress has been considered a major pathogenic factor for AMD. Modified Danggui Buxue Decoction (RRP) has a good therapeutic effect on non-proliferatic diabetic retinopathy and can improve the clinical symptoms of patients. METHODS: The key ingredients and core targets of RRP protecting retinal oxidative damage were obtained by Network pharmacology analysis. A mouse retinal oxidative damage model induced by tail vein injection of 1% NaIO3 solution (25 mg/kg) was treated with RRP for 4 weeks and used to verify the pharmacodynamics and related mechanism. AIM: This study aimed to predict and verify the protective effect and mechanism of RRP on retinal oxidative damage in mice based on network pharmacology and animal experiments. RESULTS: A total of 15 key active components included in RRP interacted with 57 core targets related to retinal oxidative damage (such as AKT1, NFE2L2, HMOX1), mainly involved in the AGE-RAGE signaling pathway in diabetic complications, PI3K-AKT signaling pathway and so on. Further studies in vivo found that RRP improved the retinal oxidative damage, increased the content of SOD and GSH, decreased the content of MDA in mouse serum, promoted the expression of p-PI3K, p-AKT, Nrf2, HO-1 and NQO1 proteins in the mouse retina, and inhibited the expression of Nrf2 in the cytoplasm. CONCLUSION: This study revealed that RRP had a protective effect on oxidative damage of the retina in mice, and might exert anti-oxidative effect by activating the PI3K/Akt/Nrf2 signal pathway. This study provided scientific data for the further development of hospital preparations of RRP, and a good theoretical basis for the clinical application of RRP.


Assuntos
Medicamentos de Ervas Chinesas , Farmacologia em Rede , Estresse Oxidativo , Animais , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Masculino , Retina/efeitos dos fármacos , Retina/metabolismo , Substâncias Protetoras/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
13.
Molecules ; 29(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893506

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a significant hepatic condition that has gained worldwide attention. Kaempferol (Kae), renowned for its diverse biological activities, including anti-inflammatory, antioxidant, anti-aging, and cardio-protective properties, has emerged as a potential therapeutic candidate for non-alcoholic steatohepatitis (NASH). Despite its promising therapeutic potential, the precise underlying mechanism of Kae's beneficial effects in NASH remains unclear. Therefore, this study aims to clarify the mechanism by conducting comprehensive in vivo and in vitro experiments. RESULTS: In this study, a murine model of non-alcoholic steatohepatitis (NASH) was established by feeding C57BL/6 female mice a high-fat diet for 12 weeks. Kaempferol (Kae) was investigated for its ability to modulate systemic inflammatory responses and lipid metabolism in this model (20 mg/kg per day). Notably, Kae significantly reduced the expression of NLRP3-ASC/TMS1-Caspase 3, a crucial mediator of liver tissue inflammation. Additionally, in a HepG2 cell model induced with palmitic acid/oleic acid (PA/OA) to mimic NASH conditions, Kae demonstrated the capacity to decrease lipid droplet accumulation and downregulate the expression of NLRP3-ASC/TMS1-Caspase 3 (20 µM and the final concentration to 20 nM). These findings suggest that Kae may hold therapeutic potential in the treatment of NASH by targeting inflammatory and metabolic pathways. CONCLUSIONS: These findings suggest that kaempferol holds potential as a promising therapeutic intervention for ameliorating non-alcoholic fatty liver disease (NAFLD).


Assuntos
Caspase 3 , Quempferóis , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neutrófilos , Hepatopatia Gordurosa não Alcoólica , Transdução de Sinais , Quempferóis/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos , Humanos , Transdução de Sinais/efeitos dos fármacos , Caspase 3/metabolismo , Feminino , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Células Hep G2 , Dieta Hiperlipídica/efeitos adversos
14.
Adv Healthc Mater ; : e2400970, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838184

RESUMO

Natural killer (NK) cells, serve as the frontline defense of the immune system, and are capable of surveilling and eliminating tumor cells. Their significance in tumor immunotherapy has garnered considerable attention in recent years. However, the absence of specific receptor-ligand interactions between NK cells and tumor cells hampers their selectivity, thereby limiting the therapeutic effectiveness of NK cell-based tumor immunotherapy. Herein, this work constructs polymannose-engineered NK (pM-NK) cells via metabolic glycoengineering and copper-free click chemistry. Polymannose containing dibenzocyclooctyne terminal groups (pM-DBCO) is synthesized and covalently modified on the surface of azido-labeled NK cells. Compared to the untreated NK cells, the interactions between pM-NK cells and MDA-MB-231 cells, a breast tumor cell line with overexpression of mannose receptors (MRs), are significantly increased, and lead to significantly enhanced killing efficacy. Consequently, intravenous administration of pM-NK cells will effectively inhibit the tumor growth and will prolong the survival of mice bearing MDA-MB-231 tumors. Thus, this work presents a novel strategy for tumor-targeting NK cell-based tumor immunotherapy.

15.
Front Microbiol ; 15: 1392441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706968

RESUMO

Aims: The high salinity of soil, nutrient scarcity, and poor aggregate structure limit the exploitation and utilization of coastal mudflat resources and the sustainable development of saline soil agriculture. In this paper, the effects of applying exogenous organic acids combined with biological substrate on the composition and diversity of soil bacterial community were studied in moderately saline mudflats in Jiangsu Province. Methods: A combination of three exogenous organic acids (humic acid, fulvic acid, and citric acid) and four biological substrates (cottonseed hull, cow manure, grass charcoal, and pine needle) was set up set up on a coastal saline mudflat planted with a salt-tolerant forage grass, sweet sorghum. A total of 120 kg ha-1 of organic acids and 5,000 kg ha-1 of substrates were used, plus two treatments, CK without application of organic acids and substrates and CK0 in bare ground, for a total of 14 treatments. Results: No significant difference was found in the alpha diversity of soil bacterial community among all treatments (p ≥ 0.05), with the fulvic acid composite pine needle (FPN) treatment showing the largest increase in each index. The beta diversity differed significantly (p < 0.05) among all treatments, and the difference between citric acid-grass charcoal (CGC) and CK treatments was greater than that of other treatments. All treatments were effective in increasing the number of bacterial ASVs and affecting the structural composition of the community. Citric acid-cow manure (CCM), FPN, and CGC treatments were found to be beneficial for increasing the relative abundance of Proteobacteria, Chloroflexi, and Actinobacteria, respectively. By contrast, all treatments triggered a decrease in the relative abundance of Acidobacteria. Conclusion: Among the 12 different combinations of exogenous organic acid composite biomass substrates applied to the coastal beach, the CGC treatment was more conducive to increasing the relative abundance of the salt-tolerant bacteria Proteobacteria, Chloroflexi and Actinobacteria, and improving the community structure of soil bacteria. The FPN treatment was more conducive to increase the species diversity of the soil bacterial community and adjust the species composition of the bacterial community.

16.
Angew Chem Int Ed Engl ; 63(24): e202402853, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598262

RESUMO

In the development of dendritic cell (DC) vaccines, the maturation of DCs is a critical stage. Adjuvants play a pivotal role in the maturation of DCs, with a major concern being to ensure both efficacy and safety. This study introduces an innovative approach that combines high efficacy with safety through the synthesis of micro-adjuvants grafted with copolymers of 2-(methacrylamido) glucopyranose (MAG) and methacryloxyethyl trimethyl ammonium chloride (DMC). The utilization of metal-free surface-initiated atom transfer radical polymerization enables the production of safe and recyclable adjuvants. These micrometer-sized adjuvants surpass the optimal size range for cellular endocytosis, enabling the retrieval and reuse of them during the ex vivo maturation process, mitigating potential toxicity concerns associated with the endocytosis of non-metabolized nanoparticles. Additionally, the adjuvants exhibit a "micro-ligand-mediated maturation enhancement" effect for DC maturation. This effect is influenced by the shape of the particle, as evidenced by the distinct promotion effects of rod-like and spherical micro-adjuvants with comparable sizes. Furthermore, the porous structure of the adjuvants enables them to function as cargo-carrying "micro-shuttles", releasing antigens upon binding to DCs to facilitate efficient antigen delivery.


Assuntos
Adjuvantes Imunológicos , Células Dendríticas , Polimerização , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/síntese química , Vacinas/química , Vacinas/imunologia , Tamanho da Partícula , Camundongos , Animais , Polímeros/química , Polímeros/farmacologia , Polímeros/síntese química
18.
PLoS One ; 19(4): e0294227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564630

RESUMO

Current evidence suggests that DEP domain containing 1 (DEPDC1) has an important effect on non-small-cell lung cancer (NSCLC). However, the diagnostic value and the regulatory function within NSCLC are largely unclear. This work utilized publicly available databases and in vitro experiments for exploring, DEPDC1 expression, clinical features, diagnostic significance and latent molecular mechanism within NSCLC. According to our results, DEPDC1 was remarkably upregulated in the tissues of NSCLC patients compared with non-carcinoma tissues, linked with gender, stage, T classification and N classification based on TCGA data and associated with smoking status and stage according to GEO datasets. Meanwhile, the summary receiver operating characteristic (sROC) curve analysis result showed that DEPDC1 had a high diagnostic value in NSCLC (AUC = 0.96, 95% CI: 0.94-0.98; diagnostic odds ratio = 99.08, 95%CI: 31.91-307.65; sensitivity = 0.89, 95%CI: 0.81-0.94; specificity = 0.92, 95%CI: 0.86-0.96; positive predictive value = 0.94, 95%CI: 0.89-0.98; negative predictive value = 0.78, 95%CI: 0.67-0.90; positive likelihood ratio = 11.77, 95%CI: 6.11-22.68; and negative likelihood ratio = 0.12, 95%CI: 0.06-0.22). Subsequently, quantitative real-time PCR (qRT-PCR) and western blotting indicated that DEPDC1 was high expressed in NSCLC cells. According to the in vitro MTS and apoptotic assays, downregulated DEPDC1 expression targeting P53 signaling pathway inhibited the proliferation of NSCLC cells while promoting apoptosis of NSCLC cells. Moreover, DEPDC1 was significantly correlated with immune cell infiltrating levels in NSCLC based on TCGA data, which were primarily associated with T cells CD4 memory activated, macrophages M1, B cells memory, mast cells resting, T cells regulatory, monocytes, and T cells CD4 memory resting. Compared with the group with high expression of DEPDC1, the group with low expression level had higher scores for immune checkpoint inhibitors (ICIs) treatment. GSEA confirmed that DEPDC1 was involved in gene expression and tumor-related signaling pathways. Finally, DEPDC1 and its associated immune-related genes were shown to be enriched in 'receptor ligand activity', 'external side of plasma membrane', 'regulation of innate immune response', and 'Epstein-Barr virus infection' pathways. The present study demonstrates that DEPDC1 may contribute to NSCLC tumorigenesis and can be applied as the biomarker for diagnosis and immunology.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Infecções por Vírus Epstein-Barr , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Herpesvirus Humano 4/metabolismo , Transdução de Sinais , Proteínas de Neoplasias/genética , Proteínas Ativadoras de GTPase/metabolismo
19.
Heliyon ; 10(8): e29145, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628746

RESUMO

The Mongolian medical silver needles often encounter issues of bending, fracturing, and blunting in clinical applications. Similarly, Mongolian warm needles can cause burns on patients due to inaccurate temperature control. In this study, we developed an Ag85Cu15 alloy specifically for acupuncture needles based on material preparation. By incorporating appropriate amounts of Mn and Ti elements, we were able to enhance the mechanical properties and biocompatibility of the acupuncture needles. Compared to commercially available silver needles, this alloy exhibited a significant increase in microhardness up to 210.2 Hv0.2 and an improved tensile strength of 880.2 MPa. Furthermore, we designed a thermoelectric effect-based temperature measurement model for precise control of the warm needle's temperature, enhancing the therapeutic effectiveness of the treatment.

20.
Br J Cancer ; 130(11): 1819-1827, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594370

RESUMO

BACKGROUND: Although DHFR gene amplification has long been known as a major mechanism for methotrexate (MTX) resistance in cancer, the early changes and detailed development of the resistance are not yet fully understood. METHODS: We performed genomic, transcriptional and proteomic analyses of human colon cancer cells with sequentially increasing levels of MTX-resistance. RESULTS: The genomic amplification evolved in three phases (pre-amplification, homogenously staining region (HSR) and extrachromosomal DNA (ecDNA)). We confirm that genomic amplification and increased expression of DHFR, with formation of HSRs and especially ecDNAs, is the major driver of resistance. However, DHFR did not play a detectable role in the early phase. In the late phase (ecDNA), increase in FAM151B protein level may also have an important role by decreasing sensitivity to MTX. In addition, although MSH3 and ZFYVE16 may be subject to different posttranscriptional regulations and therefore protein expressions are decreased in ecDNA stages compared to HSR stages, they still play important roles in MTX resistance. CONCLUSION: The study provides a detailed evolutionary trajectory of MTX-resistance and identifies new targets, especially ecDNAs, which could help to prevent drug resistance. It also presents a proof-of-principal approach which could be applied to other cancer drug resistance studies.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Amplificação de Genes , Metotrexato , Tetra-Hidrofolato Desidrogenase , Humanos , Metotrexato/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Antimetabólitos Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...