Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Cells ; 47(2): 100011, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242235

RESUMO

Online application for survival analysis (OASIS) and its update, OASIS 2, have been widely used for survival analysis in biological and medical sciences. Here, we provide a portable version of OASIS, an all-in-one offline suite, to facilitate secure survival analysis without uploading the data to online servers. OASIS portable provides a virtualized and isolated instance of the OASIS 2 webserver, operating on the users' personal computers, and enables user-friendly survival analysis without internet connection and security issues.


Assuntos
Internet , Análise de Sobrevida
3.
J Exp Bot ; 74(13): 3833-3850, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37025006

RESUMO

Microalgae hold enormous potential to provide a safe and sustainable source of high-value compounds, acting as carbon-fixing biofactories that could help to mitigate rapidly progressing climate change. Bioengineering microalgal strains will be key to optimizing and modifying their metabolic outputs, and to render them competitive with established industrial biotechnology hosts, such as bacteria or yeast. To achieve this, precise and tuneable control over transgene expression will be essential, which would require the development and rational design of synthetic promoters as a key strategy. Among green microalgae, Chlamydomonas reinhardtii represents the reference species for bioengineering and synthetic biology; however, the repertoire of functional synthetic promoters for this species, and for microalgae generally, is limited in comparison to other commercial chassis, emphasizing the need to expand the current microalgal gene expression toolbox. Here, we discuss state-of-the-art promoter analyses, and highlight areas of research required to advance synthetic promoter development in C. reinhardtii. In particular, we exemplify high-throughput studies performed in other model systems that could be applicable to microalgae, and propose novel approaches to interrogating algal promoters. We lastly outline the major limitations hindering microalgal promoter development, while providing novel suggestions and perspectives for how to overcome them.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Microalgas/genética , Microalgas/metabolismo , Biotecnologia , Regiões Promotoras Genéticas/genética , Biologia Sintética
4.
Metab Eng ; 75: 143-152, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549411

RESUMO

Flavonoids are a group of secondary metabolites from plants that have received attention as high value-added pharmacological substances. Recently, a robust and efficient bioprocess using recombinant microbes has emerged as a promising approach to supply flavonoids. In the flavonoid biosynthetic pathway, the rate of chalcone synthesis, the first committed step, is a major bottleneck. However, chalcone synthase (CHS) engineering was difficult because of high-level conservation and the absence of effective screening tools, which are limited to overexpression or homolog-based combinatorial strategies. Furthermore, it is necessary to precisely regulate the metabolic flux for the optimum availability of malonyl-CoA, a substrate of chalcone synthesis. In this study, we engineered CHS and optimized malonyl-CoA availability to establish a platform strain for naringenin production, a key molecular scaffold for various flavonoids. First, we engineered CHS through synthetic riboswitch-based high-throughput screening of rationally designed mutant libraries. Consequently, the catalytic efficiency (kcat/Km) of the optimized CHS enzyme was 62% higher than that of the wild-type enzyme. In addition to CHS engineering, we designed genetic circuits using transcriptional repressors to fine-tune the malonyl-CoA availability. The best mutant with synergistic effects of the engineered CHS and the optimized genetic circuit produced 98.71 mg/L naringenin (12.57 mg naringenin/g glycerol), which is the highest naringenin concentration and yield from glycerol in similar culture conditions reported to date, a 2.5-fold increase compared to the parental strain. Overall, this study provides an effective strategy for efficient production of flavonoids.


Assuntos
Chalconas , Flavanonas , Riboswitch , Flavonoides/genética , Glicerol , Flavanonas/genética , Malonil Coenzima A/genética , Malonil Coenzima A/metabolismo , Engenharia Metabólica
5.
Nat Commun ; 13(1): 6506, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344561

RESUMO

Microbial consortia have been considered potential platforms for bioprocessing applications. However, the complexity in process control owing to the use of multiple strains necessitates the use of an efficient population control strategy. Herein, we report circuit-guided synthetic acclimation as a strategy to improve biochemical production by a microbial consortium. We designed a consortium comprising alginate-utilizing Vibrio sp. dhg and 3-hydroxypropionic acid (3-HP)-producing Escherichia coli strains for the direct conversion of alginate to 3-HP. We introduced a genetic circuit, named "Population guider", in the E. coli strain, which degrades ampicillin only when 3-HP is produced. In the presence of ampicillin as a selection pressure, the consortium was successfully acclimated for increased 3-HP production by 4.3-fold compared to that by a simple co-culturing consortium during a 48-h fermentation. We believe this concept is a useful strategy for the development of robust consortium-based bioprocesses.


Assuntos
Escherichia coli , Consórcios Microbianos , Consórcios Microbianos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Aclimatação , Ampicilina/metabolismo , Alginatos/metabolismo
6.
Nat Commun ; 13(1): 5353, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097012

RESUMO

Physical compartmentalization of metabolism using membranous organelles in eukaryotes is helpful for chemical biosynthesis to ensure the availability of substrates from competitive metabolic reactions. Bacterial hosts lack such a membranous system, which is one of the major limitations for efficient metabolic engineering. Here, we employ kinetic compartmentalization with the introduction of an unnatural enzymatic reaction by an engineered enzyme as an alternative strategy to enable substrate availability from competitive reactions through kinetic isolation of metabolic pathways. As a proof of concept, we kinetically isolate the itaconate synthetic pathway from the tricarboxylic acid cycle in Escherichia coli, which is natively separated by mitochondrial membranes in Aspergillus terreus. Specifically, 2-methylcitrate dehydratase is engineered to alternatively catalyze citrate and kinetically secure cis-aconitate for efficient production using a high-throughput screening system. Itaconate production can be significantly improved with kinetic compartmentalization and its strategy has the potential to be widely applicable.


Assuntos
Engenharia Metabólica , Succinatos , Escherichia coli/metabolismo , Redes e Vias Metabólicas , Succinatos/metabolismo
7.
Cell Rep ; 36(8): 109589, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433019

RESUMO

Proper carbon flux distribution between cell growth and production of a target compound is important for biochemical production because improper flux reallocation inhibits cell growth, thus adversely affecting production yield. Here, using a synthetic biosensor to couple production of a specific metabolite with cell growth, we spontaneously evolve cells under the selective condition toward the acquisition of genotypes that optimally reallocate cellular resources. Using 3-hydroxypropionic acid (3-HP) production from glycerol in Escherichia coli as a model system, we determine that mutations in the conserved regions of proteins involved in global transcriptional regulation alter the expression of several genes associated with central carbon metabolism. These changes rewire central carbon flux toward the 3-HP production pathway, increasing 3-HP yield and reducing acetate accumulation by alleviating overflow metabolism. Our study provides a perspective on adaptive laboratory evolution (ALE) using synthetic biosensors, thereby supporting future efforts in metabolic pathway optimization.


Assuntos
Metabolismo dos Carboidratos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicerol/metabolismo , Ácido Láctico/análogos & derivados , Técnicas Biossensoriais/métodos , Evolução Molecular Direcionada , Regulação Bacteriana da Expressão Gênica , Ácido Láctico/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Mutação , Biologia Sintética
8.
Nucleic Acids Res ; 49(12): 6702-6721, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34133714

RESUMO

RNA-binding proteins (RBPs) are crucial factors of post-transcriptional gene regulation and their modes of action are intensely investigated. At the center of attention are RNA motifs that guide where RBPs bind. However, sequence motifs are often poor predictors of RBP-RNA interactions in vivo. It is hence believed that many RBPs recognize RNAs as complexes, to increase specificity and regulatory possibilities. To probe the potential for complex formation among RBPs, we assembled a library of 978 mammalian RBPs and used rec-Y2H matrix screening to detect direct interactions between RBPs, sampling > 600 K interactions. We discovered 1994 new interactions and demonstrate that interacting RBPs bind RNAs adjacently in vivo. We further find that the mRNA binding region and motif preferences of RBPs deviate, depending on their adjacently binding interaction partners. Finally, we reveal novel RBP interaction networks among major RNA processing steps and show that splicing impairing RBP mutations observed in cancer rewire spliceosomal interaction networks. The dataset we provide will be a valuable resource for understanding the combinatorial interactions of RBPs with RNAs and the resulting regulatory outcomes.


Assuntos
Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Animais , Humanos , Camundongos , Mutação , Neoplasias/genética , Motivos de Nucleotídeos , Ligação Proteica , RNA/química , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
9.
J Am Chem Soc ; 143(15): 5836-5844, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33834782

RESUMO

The identification of each cell type is essential for understanding multicellular communities. Antibodies set as biomarkers have been the main toolbox for cell-type recognition, and chemical probes are emerging surrogates. Herein we report the first small-molecule probe, CDgB, to discriminate B lymphocytes from T lymphocytes, which was previously impossible without the help of antibodies. Through the study of the origin of cell specificity, we discovered an unexpected novel mechanism of membrane-oriented live-cell distinction. B cells maintain higher flexibility in their cell membrane than T cells and accumulate the lipid-like probe CDgB more preferably. Because B and T cells share common ancestors, we tracked the cell membrane changes of the progenitor cells and disclosed the dynamic reorganization of the membrane properties over the lymphocyte differentiation progress. This study casts an orthogonal strategy for the small-molecule cell identifier and enriches the toolbox for live-cell distinction from complex cell communities.


Assuntos
Linfócitos B/citologia , Membrana Celular/metabolismo , Corantes Fluorescentes/química , Linfócitos T/citologia , Animais , Linfócitos B/química , Linfócitos B/imunologia , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Membrana Celular/química , Citometria de Fluxo , Lipidômica , Camundongos , Linfócitos T/química , Linfócitos T/imunologia
10.
PLoS Biol ; 19(2): e3001138, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33621242

RESUMO

RNA splicing is widely dysregulated in cancer, frequently due to altered expression or activity of splicing factors (SFs). Microexons are extremely small exons (3-27 nucleotides long) that are highly evolutionarily conserved and play critical roles in promoting neuronal differentiation and development. Inclusion of microexons in mRNA transcripts is mediated by the SF Serine/Arginine Repetitive Matrix 4 (SRRM4), whose expression is largely restricted to neural tissues. However, microexons have been largely overlooked in prior analyses of splicing in cancer, as their small size necessitates specialized computational approaches for their detection. Here, we demonstrate that despite having low expression in normal nonneural tissues, SRRM4 is further silenced in tumors, resulting in the suppression of normal microexon inclusion. Remarkably, SRRM4 is the most consistently silenced SF across all tumor types analyzed, implying a general advantage of microexon down-regulation in cancer independent of its tissue of origin. We show that this silencing is favorable for tumor growth, as decreased SRRM4 expression in tumors is correlated with an increase in mitotic gene expression, and up-regulation of SRRM4 in cancer cell lines dose-dependently inhibits proliferation in vitro and in a mouse xenograft model. Further, this proliferation inhibition is accompanied by induction of neural-like expression and splicing patterns in cancer cells, suggesting that SRRM4 expression shifts the cell state away from proliferation and toward differentiation. We therefore conclude that SRRM4 acts as a proliferation brake, and tumors gain a selective advantage by cutting off this brake.


Assuntos
Éxons/fisiologia , Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Splicing de RNA , Processamento Alternativo , Animais , Linhagem Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Masculino , Camundongos , Neoplasias/genética , Proteínas do Tecido Nervoso/genética
11.
Mol Syst Biol ; 16(5): e9208, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32449593

RESUMO

The C-terminal sequence of a protein is involved in processes such as efficiency of translation termination and protein degradation. However, the general relationship between features of this C-terminal sequence and levels of protein expression remains unknown. Here, we identified C-terminal amino acid biases that are ubiquitous across the bacterial taxonomy (1,582 genomes). We showed that the frequency is higher for positively charged amino acids (lysine, arginine), while hydrophobic amino acids and threonine are lower. We then studied the impact of C-terminal composition on protein levels in a library of Mycoplasma pneumoniae mutants, covering all possible combinations of the two last codons. We found that charged and polar residues, in particular lysine, led to higher expression, while hydrophobic and aromatic residues led to lower expression, with a difference in protein levels up to fourfold. We further showed that modulation of protein degradation rate could be one of the main mechanisms driving these differences. Our results demonstrate that the identity of the last amino acids has a strong influence on protein expression levels.


Assuntos
Aminoácidos/química , Bactérias/química , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Genes Bacterianos , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Aminoácidos/metabolismo , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/metabolismo , Arginina/química , Arginina/metabolismo , Bactérias/genética , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Análise por Conglomerados , Uso do Códon/genética , Códon de Terminação/genética , Biologia Computacional , Evolução Molecular , Interações Hidrofóbicas e Hidrofílicas , Lisina/química , Lisina/metabolismo , Mycoplasma pneumoniae/química , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/metabolismo , Filogenia , Domínios Proteicos , Processamento de Proteína Pós-Traducional/genética
12.
Methods ; 178: 19-32, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31493518

RESUMO

Understanding which proteins and RNAs directly interact is crucial for revealing cellular mechanisms of gene regulation. Efficient methods allowing to detect RNA-protein interactions and dissect the underlying molecular origin for RNA-binding protein (RBP) specificity are in high demand. The recently developed recombination-Y3H screening (rec-Y3H) enabled many-by-many detection of interactions between pools of proteins and RNA fragments for the first time. Here, we test different conditions for protein-RNA interaction selection during rec-Y3H screening and provide information on the screen performance in several selection media. We further show that rec-Y3H can detect the nucleotide and amino acid sequence determinants of protein-RNA interactions by mutating residues of interacting proteins and RNAs simultaneously. We envision that systematic RNA-protein interface mutation screening will be useful to understand the molecular origin of RBP selectivity and to engineer RBPs with targeted specificities in the future.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Proteínas de Ligação a RNA/isolamento & purificação , RNA/isolamento & purificação , Sítios de Ligação/genética , Regulação da Expressão Gênica/genética , Humanos , Mutação/genética , RNA/genética , Proteínas de Ligação a RNA/genética
14.
Biotechnol Adv ; 37(8): 107452, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31669138

RESUMO

Ribozymes are functional RNA molecules that can catalyze biochemical reactions. Since the discovery of the first catalytic RNA, various functional ribozymes (e.g., self-cleaving ribozymes, splicing ribozymes, RNase P, etc.) have been uncovered, and their structures and mechanisms have been identified. Ribozymes have the advantage of possessing features of "RNA" molecules; hence, they are highly applicable for manipulating various biological systems. To fully employ ribozymes in a broad range of biological applications in synthetic biology, a variety of ribozymes have been developed and engineered. Here, we summarize the main features of ribozymes and the methods used for engineering their functions. We also describe the past and recent efforts towards exploiting ribozymes for effective and novel applications in synthetic biology. Based on studies on their significance in biological applications till date, ribozymes are expected to advance technologies in artificial biological systems.


Assuntos
Biologia Sintética , Catálise , Conformação de Ácido Nucleico , RNA Catalítico
15.
Biochim Biophys Acta Mol Basis Dis ; 1865(11): 165524, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31381993

RESUMO

Tetrahydrobiopterin (BH4) shows therapeutic potential as an endogenous target in cardiovascular diseases. Although it is involved in cardiovascular metabolism and mitochondrial biology, its mechanisms of action are unclear. We investigated how BH4 regulates cardiovascular metabolism using an unbiased multiple proteomics approach with a sepiapterin reductase knock-out (Spr-/-) mouse as a model of BH4 deficiency. Spr-/- mice exhibited a shortened life span, cardiac contractile dysfunction, and morphological changes. Multiple proteomics and systems-based data-integrative analyses showed that BH4 deficiency altered cardiac mitochondrial oxidative phosphorylation. Along with decreased transcription of major mitochondrial biogenesis regulatory genes, including Ppargc1a, Ppara, Esrra, and Tfam, Spr-/- mice exhibited lower mitochondrial mass and severe oxidative phosphorylation defects. Exogenous BH4 supplementation, but not nitric oxide supplementation or inhibition, rescued these cardiac and mitochondrial defects. BH4 supplementation also recovered mRNA and protein levels of PGC1α and its target proteins involved in mitochondrial biogenesis (mtTFA and ERRα), antioxidation (Prx3 and SOD2), and fatty acid utilization (CD36 and CPTI-M) in Spr-/- hearts. These results indicate that BH4-activated transcription of PGC1α regulates cardiac energy metabolism independently of nitric oxide and suggests that BH4 has therapeutic potential for cardiovascular diseases involving mitochondrial dysfunction.


Assuntos
Biopterinas/análogos & derivados , Fármacos Cardiovasculares/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Biopterinas/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Biogênese de Organelas , Transdução de Sinais/efeitos dos fármacos
16.
PLoS Biol ; 17(8): e3000415, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31408455

RESUMO

Low temperatures delay aging and promote longevity in many organisms. However, the metabolic and homeostatic aspects of low-temperature-induced longevity remain poorly understood. Here, we show that lipid homeostasis regulated by Caenorhabditis elegans Mediator 15 (MDT-15 or MED15), a transcriptional coregulator, is essential for low-temperature-induced longevity and proteostasis. We find that inhibition of mdt-15 prevents animals from living long at low temperatures. We show that MDT-15 up-regulates fat-7, a fatty acid desaturase that converts saturated fatty acids (SFAs) to unsaturated fatty acids (UFAs), at low temperatures. We then demonstrate that maintaining a high UFA/SFA ratio is essential for proteostasis at low temperatures. We show that dietary supplementation with a monounsaturated fatty acid, oleic acid (OA), substantially mitigates the short life span and proteotoxicity in mdt-15(-) animals at low temperatures. Thus, lipidostasis regulated by MDT-15 appears to be a limiting factor for proteostasis and longevity at low temperatures. Our findings highlight the crucial roles of lipid regulation in maintaining normal organismal physiology under different environmental conditions.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Longevidade/fisiologia , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans , Temperatura Baixa , Suplementos Nutricionais , Ácidos Graxos Dessaturases/metabolismo , Homeostase , Metabolismo dos Lipídeos , Ácido Oleico/administração & dosagem , Proteostase , Ativação Transcricional
17.
Nat Commun ; 10(1): 2486, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171782

RESUMO

Although brown macroalgae holds potential as an alternative feedstock, its utilization by conventional microbial platforms has been limited due to the inability to metabolize one of the principal sugars, alginate. Here, we isolate Vibrio sp. dhg, a fast-growing bacterium that can efficiently assimilate alginate. Based on systematic characterization of the genomic information of Vibrio sp. dhg, we establish a genetic toolbox for its engineering. We also demonstrate its ability to rapidly produce ethanol, 2,3-butanediol, and lycopene from brown macroalgae sugar mixture with high productivities and yields. Collectively, Vibrio sp. dhg can be used as a platform for the efficient conversion of brown macroalgae sugars into diverse value-added biochemicals.


Assuntos
Phaeophyceae/metabolismo , Alga Marinha/metabolismo , Vibrio/metabolismo , Alginatos/metabolismo , Butileno Glicóis/metabolismo , Etanol/metabolismo , Licopeno/metabolismo , Manitol/metabolismo
18.
Aging Cell ; 18(3): e12906, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30773781

RESUMO

PDZ domain-containing proteins (PDZ proteins) act as scaffolds for protein-protein interactions and are crucial for a variety of signal transduction processes. However, the role of PDZ proteins in organismal lifespan and aging remains poorly understood. Here, we demonstrate that KIN-4, a PDZ domain-containing microtubule-associated serine-threonine (MAST) protein kinase, is a key longevity factor acting through binding PTEN phosphatase in Caenorhabditis elegans. Through a targeted genetic screen for PDZ proteins, we find that kin-4 is required for the long lifespan of daf-2/insulin/IGF-1 receptor mutants. We then show that neurons are crucial tissues for the longevity-promoting role of kin-4. We find that the PDZ domain of KIN-4 binds PTEN, a key factor for the longevity of daf-2 mutants. Moreover, the interaction between KIN-4 and PTEN is essential for the extended lifespan of daf-2 mutants. As many aspects of lifespan regulation in C. elegans are evolutionarily conserved, MAST family kinases may regulate aging and/or age-related diseases in mammals through their interaction with PTEN.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Longevidade/genética , Domínios PDZ/genética , PTEN Fosfo-Hidrolase/genética
19.
Nat Commun ; 9(1): 3747, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30217970

RESUMO

Knowing which proteins and RNAs directly interact is essential for understanding cellular mechanisms. Unfortunately, discovering such interactions is costly and often unreliable. To overcome these limitations, we developed rec-YnH, a new yeast two and three-hybrid-based screening pipeline capable of detecting interactions within protein libraries or between protein libraries and RNA fragment pools. rec-YnH combines batch cloning and transformation with intracellular homologous recombination to generate bait-prey fusion libraries. By developing interaction selection in liquid-gels and using an ORF sequence-based readout of interactions via next-generation sequencing, we eliminate laborious plating and barcoding steps required by existing methods. We use rec-Y2H to simultaneously map interactions of protein domains and reveal novel putative interactors of PAR proteins. We further employ rec-Y2H to predict the architecture of published coprecipitated complexes. Finally, we use rec-Y3H to map interactions between multiple RNA-binding proteins and RNAs-the first time interactions between protein and RNA pools are simultaneously detected.


Assuntos
Mapas de Interação de Proteínas , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Clonagem Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Ensaios de Triagem em Larga Escala
20.
Development ; 145(7)2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29549110

RESUMO

Dishevelled (Dvl/Dsh) is a key scaffold protein that propagates Wnt signaling essential for embryogenesis and homeostasis. However, whether the antagonism of Wnt signaling that is necessary for vertebrate head formation can be achieved through regulation of Dsh protein stability is unclear. Here, we show that membrane-associated RING-CH2 (March2), a RING-type E3 ubiquitin ligase, antagonizes Wnt signaling by regulating the turnover of Dsh protein via ubiquitin-mediated lysosomal degradation in the prospective head region of Xenopus We further found that March2 acquires regional and functional specificities for head formation from the Dsh-interacting protein Dapper1 (Dpr1). Dpr1 stabilizes the interaction between March2 and Dsh in order to mediate ubiquitylation and the subsequent degradation of Dsh protein only in the dorso-animal region of Xenopus embryo. These results suggest that March2 restricts cytosolic pools of Dsh protein and reduces the need for Wnt signaling in precise vertebrate head development.


Assuntos
Proteínas Desgrenhadas/metabolismo , Cabeça/embriologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Técnicas de Cultura de Células , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Morfogênese/genética , Proteólise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Ubiquitinação/genética , Proteínas Wnt/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...