Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Nutrition ; 125: 112468, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38781749

RESUMO

OBJECTIVES: The aim of this study was to investigate the relationship among phase angle (PA), malnutrition, and prognosis in patients with gastrointestinal cancer. METHODS: In total, 870 patients with gastrointestinal cancer were enrolled. Kaplan-Meier curves and Cox proportional hazards models were used to evaluate the association between PA and survival risk. Restricted cubic spline regression was used for flexibility analysis to explore sex-specific associations between PA and survival. Logistic regression was used to assess the relationships among PA, malnutrition, and cachexia. RESULTS: Low PA was closely associated with poor physical conditions, diminished quality of life, and malnutrition. Patients with low PA had a significantly worse prognosis than those with high PA (60.6% versus 72.8%; log-rank P < 0.001). PA was suitable for the prognostic assessment of patients with advanced-stage tumors. Regardless of sex, patients with lower PA showed significantly poorer survival rates. Cox proportional hazards models identified PA as an independent predictor of prognosis in patients with gastrointestinal cancer (hazard ratio (HR)=0.534; 95% confidence interval (CI)=0.409-0.696, P < 0.001). Subgroup analysis indicated that a high PA was an independent risk factor affecting the prognoses of patients with esophageal, liver, and intrahepatic bile duct cancers. Interestingly, variations in PA had a more significant prognostic effect on survival in men than in women. The logistic regression model confirmed that PA is a valuable indicator for assessing malnutrition and cachexia in patients with gastrointestinal cancer. Among all body composition indicators, PA demonstrated the highest accuracy for prognostic prediction. CONCLUSIONS: PA was identified as a robust predictor of malnutrition and poor prognosis in patients with gastrointestinal cancer.

2.
Natl Sci Rev ; 11(1): nwad247, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38274004

RESUMO

The neocortex contains a vast collection of diverse neurons organized into distinct layers. While nearly all neocortical neurons are generated by radial glial progenitors (RGPs), it remains largely unclear how a complex yet organized neocortex is constructed reliably and robustly. Here, we show that the division behavior and neuronal output of RGPs are highly constrained with patterned variabilities to support the reliable and robust construction of the mouse neocortex. The neurogenic process of RGPs can be well-approximated by a consistent Poisson-like process unfolding over time, producing deep to superficial layer neurons progressively. The exact neuronal outputs regarding layer occupation are variable; yet, this variability is constrained systematically to support all layer formation, largely reflecting the variable intermediate progenitor generation and RGP neurogenic entry and exit timing differences. Together, these results define the fundamental features of neocortical neurogenesis with a balanced reliability and variability for the construction of the complex neocortex.

3.
J Control Release ; 367: 441-469, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295991

RESUMO

Surfaces with high aspect ratio microarray structures can implement sophisticated assignment in typical fields including microfluidics, sensor, biomedicine, et al. via regulating their deformation or the material properties. Inspired by natural materials and systems, for example sea cockroaches, water spiders, cacti, lotus leaves, rice leaves, and cedar leaves, many researchers have focused on microneedle functional surface studies. When the surface with high aspect ratio microarray structures is stimulated by the external fields, such as optical, electric, thermal, magnetic, the high aspect ratio microarray structures can undergo hydrophilic and hydrophobic switching or shape change, which may be gifted the surfaces with the ability to perform complex task, including directional liquid/air transport, targeted drug delivery, microfluidic chip sensing. In this review, the fabrication principles of various surfaces with high aspect ratio microarray structures are classified and summarized. Mechanisms of liquid manipulation on hydrophilic/hydrophobic surfaces with high aspect ratio microarray structures are clarified based on Wenzel model, Cassie model, Laplace pressure theories and so on. Then the intelligent control strategies have been demonstrated. The applications in microfluidic, drug delivery, patch sensors have been discussed. Finally, current challenges and new insights of future prospects for dynamic manipulation of liquid/air based on biomimetic surface with high aspect ratio microarray structures are also addressed.


Assuntos
Microfluídica , Água , Propriedades de Superfície , Interações Hidrofóbicas e Hidrofílicas , Água/química , Eletricidade
4.
BMC Microbiol ; 23(1): 395, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071295

RESUMO

Certain strains of probiotic bacteria can secret functional substances namely digestive enzymes and functional peptides to regulate physiological conditions such as digestion and anti-oxidation, which are often incorporated in industrial broiler chick production. However, few studies have detailed the action mechanisms and effects of these bacteria on regulating growth and anti-oxidation levels in broiler chickens. Ligilactobacillus salivarius is a strain of probiotic bacteria used as dietary supplement. In the present study, Ligilactobacillus salivarius was evaluated for its secreted digestive enzymes in vitro. To detailed evaluate the action mechanisms and effects of gastrointestinal tract (GIT) microbiota on alleviating anti-oxidation levels of broiler chickens through the gut-brain axis. Ligilactobacillus salivarius was cultured and supplemented in the food of broilers to evaluate the probiotic effect on growth and anti-oxidation by modulation of gut microbial composition and its functional metabolites using metagenomic and metabolomic assays. Biochemical results showed that Ligilactobacillus salivarius secreted digestive enzymes: protease, lipase, and amylase. Broiler chickens with Ligilactobacillus salivarius supplemented for 42 days, showed increased body weights, a reduced oxidative status, decreased malondialdehyde levels, and improved activities rates of total superoxide dismutase, glutathione peroxidase IIand IV improved. The microbial composition of caecum was more abundant than those broiler without probiotics supplementation, owing 400 of total number (489) of bacterial operational taxonomic units (OTU). The genera of Lactobacillus, Megamonas, Ruminoccoccaceae, Ruminococcus, Alistipes and Helicobacter shared the dominant proportion of Candidatus _Arthromitus compared with the control chickens. These functional bacteria genera assisted in the transportation and digestion of amino acids, carbohydrates, and ions, synthesis of cellular membranes, and anti-oxidation. Uncultured_organism_g_ Anaerosporobacter, Lactobacillus salivarius, uncultured_bacterium_g_ Ruminococcaceae_UCG-014, uncultured_bacterium_g_ Peptococcus were strongly and positively correlated with body growth performance and anti-oxidation. A metabonomic assay suggested that the secreted of gamma-aminobutyric acid and monobactam was metabolized according to the Kyoto Encyclopedia of Genes and Genomes analysis. In conclusion, Ligilactobacillus salivarius optimized microbial composition of the caecum and secreted functional peptides through gut-brain axis to improve the body growth and antioxidation of broiler chicken.


Assuntos
Ligilactobacillus salivarius , Probióticos , Animais , Galinhas , Eixo Encéfalo-Intestino , Ração Animal/análise , Probióticos/farmacologia , Bactérias , Peptídeos/metabolismo
5.
Plants (Basel) ; 12(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687386

RESUMO

Understanding the adaptation of plant species will help us develop effective breeding programs, guide the collection of germplasm, and improve the success of population restoration projects for threatened species. Genetic features correlate with species adaptation. Acer yangbiense is a critically endangered plant species with extremely small populations (PSESP). However, no information was available on its seed germination and seedling growth in populations with different genetic characteristics. In this study, we investigated seed germination and compared the performance of 566 seedlings in 10 maternal half-sib families cultivated in Kunming Botanical Garden. The results showed that A. yangbiense seeds required an average of 44 days to start germinating, with a 50% germination rate estimated to take about 47-76 days, indicating slow and irregular germination. There is a trade-off between the growth and survival in A. yangbiense seedlings, with fast growth coming at the cost of low survival. Groups that were able to recover from a recent bottleneck consistently had higher relative growth rates. High genetic diversity and low levels of inbreeding are likely to be responsible for their improved survival during drought conditions and rapid growth under optimal environmental conditions. Our results suggest that maternal genetic traits might be used as indicators for conservation and population restoration. These findings provide us with new information that could be applied to support ex situ conservation and reintroduction of threatened species.

6.
BMC Microbiol ; 23(1): 242, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648978

RESUMO

BACKGROUND: As substitutes for antibiotics, probiotic bacteria protect against digestive infections caused by pathogenic bacteria. Ligilactobacillus salivarius is a species of native lactobacillus found in both humans and animals. Herein, a swine-derived Ligilactobacillus salivarius was isolated and shown to colonize the ileal mucous membrane, thereby promoting nutritional digestion, absorption, and immunity. To evaluate its probiotic role, the entire genome was sequenced, the genetic information was annotated, and the metabolic information was analyzed. RESULTS: The phylogenetic relationship indicated that the bacteria was closer to L. salivarius MT573555.1 and MT585431.1. Functional genes included transporters, membrane proteins, enzymes, heavy metal resistance proteins, and putative proteins; metabolism-related genes were the most abundant. The six types of metabolic pathways secreted by L. salivarius were mainly composed of secretory transmembrane proteins and peptides. The secretory proteins of L. salivarius were digestive enzymes, functional proteins that regulate apoptosis, antibodies, and hormones. Non-targeted metabolomic analysis of L. salivarius metabolites suggested that ceramide, pyrrolidone- 5- carboxylic acid, N2-acetyl-L-ornithine, 2-ethyl-2-hydroxybutyric acid, N-lactoyl-phenylalanine, and 12 others were involved in antioxidation, repair of the cellular membrane, anticonvulsant, hypnosis, and appetite inhibition. Metabolites of clavaminic acid, antibiotic X14889C, and five other types of bacteriocins were identified, namely phenyllactic acid, janthitrem G, 13-demethyl tacrolimus, medinoside E, and tertonasin. The adherence and antioxidation of L. salivarius were also predicted. No virulence genes were found. CONCLUSION: The main probiotic properties of L. salivarius were identified using genomic, metabonomic, and biochemical assays, which are beneficial for porcine feeding. Our results provided deeper insights into the probiotic effects of L. salivarius.


Assuntos
Ligilactobacillus salivarius , Humanos , Animais , Suínos , Filogenia , Genômica , Metabolômica , Antibacterianos , Antioxidantes
7.
Prostaglandins Other Lipid Mediat ; 169: 106768, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37597762

RESUMO

Tartary buckwheat protein-derived peptide (Ala-Phe-Tyr-Arg-Trp, AFYRW) is a natural active peptide that hampers the atherosclerosis process, but the underlying role of AFYRW in angiogenesis remains unknown. Here, we present a system-based study to evaluate the effects of AFYRW on H2O2-induced vascular injury in human umbilical vein endothelial cells (HUVECs). HUVECs were co-incubated with H2O2 for 2 h in the vascular injury model, and AFYRW was added 24 h in advance to investigate the protective mechanism of vascular injury. We identified that AFYRW inhibits oxidative stress, cell migration, cell invasion, and angiogenesis in H2O2-treated HUVECs. In addition, we found H2O2-induced upregulation of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), phosphorylation of nuclear factor-κB (NF-κB) p65 and nuclear translocation of NF-κB decreased by AFYRW. Taken together, AFYRW attenuated H2O2-induced vascular injury through the PI3K/AKT/NF-κB pathway. Thereby, AFYRW may serve as a therapeutic option for vascular injuries.


Assuntos
Fagopyrum , Lesões do Sistema Vascular , Humanos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Fagopyrum/metabolismo , Transdução de Sinais , Lesões do Sistema Vascular/tratamento farmacológico , Lesões do Sistema Vascular/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo
8.
Chembiochem ; 24(16): e202300017, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37440197

RESUMO

Ministry of Education and Key Laboratory of Neurons and glial cells of the central nervous system (CNS) are modified by glycosylation and rely on glycosylation to achieve normal neural function. Neurodegenerative disease is a common disease of the elderly, affecting their healthy life span and quality of life, and no effective treatment is currently available. Recent research implies that various glycosylation traits are altered during neurodegenerative diseases, suggesting a potential implication of glycosylation in disease pathology. Herein, we summarized the current knowledge about glycosylation associated with Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic lateral sclerosis (ALS) pathogenesis, focusing on their promising functional avenues. Moreover, we collected research aimed at highlighting the need for such studies to provide a wealth of disease-related glycosylation information that will help us better understand the pathophysiological mechanisms and hopefully specific glycosylation information to provide further diagnostic and therapeutic directions for neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Doença de Huntington , Doenças Neurodegenerativas , Doença de Parkinson , Venenos , Humanos , Idoso , Glicosilação , Qualidade de Vida
9.
Amino Acids ; 55(8): 1063-1071, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37341830

RESUMO

Diabetes Mellitus (DM) is one of the most important public health problems, and new antidiabetic drugs with fewer side effects are urgently needed. Here, we measured the antidiabetic effects of an antioxidant peptide (Ala-Phe-Tyr-Arg-Trp, AFYRW) from Tartary Buckwheat Albumin (TBA) in a high-fat diet/streptozotocin (HFD/STZ)-induced diabetic mouse model. The data showed that AFYRW suppressed hepatocyte steatosis and triglycerides while ameliorating insulin resistance in mice. Successively, the influence of AFYRW on aberrant protein glycosylation in diabetic mice was further investigated by lectin microarrays. The results suggested AFYRW could restore the expression of GalNAc, GalNAcα1-3Gal and GalNAcα1-3Galß1-3/4Glc recognized by PTL-I, Siaα2-3Galß1-4Glc(NAc)/Glc, Siaα2-3Gal, Siaα2-3 and Siaα2-3GalNAc recognized by MAL-II, terminating in GalNAcα/ß1-3/6Gal recognized by WFA and αGalNAc, αGal, anti-A and B recognized by GSI-I to normal levels in the pancreas of HFD-STZ-induced diabetic mice. This work may provide new targets for the future discovery of potential biomarkers to evaluate the efficacy of food-derived antidiabetic drugs based on precise alterations of glycopatterns in DM.


Assuntos
Diabetes Mellitus Experimental , Fagopyrum , Camundongos , Animais , Hipoglicemiantes/farmacologia , Fagopyrum/metabolismo , Glicosilação , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Pâncreas/metabolismo , Peptídeos/farmacologia , Glicemia/metabolismo
10.
Brain Sci ; 13(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37190561

RESUMO

Migraine is a common, chronic dysfunctional disease with recurrent headaches. Its etiology and pathogenesis have not been fully understood and there is a lack of objective diagnostic criteria and biomarkers. Meanwhile, resting-state functional magnetic resonance imaging (RS-fMRI) is increasingly being used in migraine research to classify and diagnose brain disorders. However, the RS-fMRI data is characterized by a large amount of data information and the difficulty of extracting high-dimensional features, which brings great challenges to relevant studies. In this paper, we proposed an automatic recognition framework based on static functional connectivity (sFC) strength features and dynamic functional connectome pattern (DFCP) features of migraine sufferers and normal control subjects, in which we firstly extracted sFC strength and DFCP features and then selected the optimal features using the recursive feature elimination based on the support vector machine (SVM-RFE) algorithm and, finally, trained and tested a classifier with the support vector machine (SVM) algorithm. In addition, we compared the classification performance of only using sFC strength features and DFCP features, respectively. The results showed that the DFCP features significantly outperformed sFC strength features in performance, which indicated that DFCP features had a significant advantage over sFC strength features in classification. In addition, the combination of sFC strength and DFCP features had the optimal performance, which demonstrated that the combination of both features could make full use of their advantage. The experimental results suggested the method had good performance in differentiating migraineurs and our proposed classification framework might be applicable for other mental disorders.

11.
Cell Rep ; 42(3): 112170, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36842085

RESUMO

Sensory neurons in the neocortex exhibit distinct functional selectivity to constitute the neural map. While neocortical map of the visual cortex in higher mammals is clustered, it displays a striking "salt-and-pepper" pattern in rodents. However, little is known about the origin and basis of the interspersed neocortical map. Here we report that the intricate excitatory neuronal kinship-dependent synaptic connectivity influences precise functional map organization in the mouse primary visual cortex. While sister neurons originating from the same neurogenic radial glial progenitors (RGPs) preferentially develop synapses, cousin neurons derived from amplifying RGPs selectively antagonize horizontal synapse formation. Accordantly, cousin neurons in similar layers exhibit clear functional selectivity differences, contributing to a salt-and-pepper architecture. Removal of clustered protocadherins (cPCDHs), the largest subgroup of the diverse cadherin superfamily, eliminates functional selectivity differences between cousin neurons and alters neocortical map organization. These results suggest that developmental neuronal origin regulates neocortical map formation via cPCDHs.


Assuntos
Neocórtex , Camundongos , Animais , Neocórtex/fisiologia , Protocaderinas , Neurônios/fisiologia , Sinapses , Células Ependimogliais , Mamíferos
12.
Front Med ; 17(2): 339-351, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36602721

RESUMO

Ketone bodies have beneficial metabolic activities, and the induction of plasma ketone bodies is a health promotion strategy. Dietary supplementation of sodium butyrate (SB) is an effective approach in the induction of plasma ketone bodies. However, the cellular and molecular mechanisms are unknown. In this study, SB was found to enhance the catalytic activity of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting enzyme in ketogenesis, to promote ketone body production in hepatocytes. SB administrated by gavage or intraperitoneal injection significantly induced blood ß-hydroxybutyrate (BHB) in mice. BHB production was induced in the primary hepatocytes by SB. Protein succinylation was altered by SB in the liver tissues with down-regulation in 58 proteins and up-regulation in 26 proteins in the proteomics analysis. However, the alteration was mostly observed in mitochondrial proteins with 41% down- and 65% up-regulation, respectively. Succinylation status of HMGCS2 protein was altered by a reduction at two sites (K221 and K358) without a change in the protein level. The SB effect was significantly reduced by a SIRT5 inhibitor and in Sirt5-KO mice. The data suggests that SB activated HMGCS2 through SIRT5-mediated desuccinylation for ketone body production by the liver. The effect was not associated with an elevation in NAD+/NADH ratio according to our metabolomics analysis. The data provide a novel molecular mechanism for SB activity in the induction of ketone body production.


Assuntos
Corpos Cetônicos , Sirtuínas , Camundongos , Animais , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Corpos Cetônicos/metabolismo , Fígado/metabolismo , Hidroxibutiratos/metabolismo , Regulação para Baixo , Sirtuínas/genética , Sirtuínas/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo
13.
J Prosthet Dent ; 130(3): 393-401, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34782150

RESUMO

STATEMENT OF PROBLEM: As the cobalt chromium (Co-Cr) powder used in selective laser melting (SLM) is costly, reusing the remaining powder after multiple cycles provides an economic and environmental benefit. However, knowledge of the cytotoxic effect of the alloy fabricated from recycled powder is lacking. PURPOSE: The purpose of this in vitro study was to evaluate the biological effects of the Co-Cr ions released from the alloy fabricated from the recycled powder on the human gingival fibroblasts (HGFs) and normal oral keratinocytes (NOKs). MATERIAL AND METHODS: Disk-shaped Co-Cr specimens were fabricated by using the SLM technique from powders with different proportions of recycled to unused and from different recycling times. Co and Cr ions released from the disks immersed in the Dulbecco Modified Eagle Medium (DMEM) for 24 hours or 7 days were measured by inductively coupled plasma mass spectrometry (ICP-MS). Biocompatibility of Co-Cr alloy was detected by incubation of HGFs and NOKs in DMEM containing Co and Cr ions for 24 hours. The ANOVA test was used to evaluate statistically significant differences among different groups (α=.05). RESULTS: Compared with the alloy fabricated from 100% unused powder, the concentrations of Co and Cr ions increased with the increase of recycled to unused powder ratio or with the increase in the recycling times. HGFs and NOKs showed an increase in apoptosis, intracellular oxidative stress (ROS), hypoxia-inducing factor1α (HIF-1α), and proinflammatory cytokines (tumor necrosis factor alpha [TNF- α], interleukin 6 [IL-6], interleukin 8 [IL-8], and vascular endothelial growth factor [VEGF]) with the increase of Co-Cr ions in a concentration-dependent manner. A significant reduction in cell proliferation was found with the increase in the concentrations of Co and Cr ions (P<.05). CONCLUSIONS: The results of this study indicated that Co-Cr alloy fabricated from partially recycled powder or powder with different recycling times released significantly more Co and Cr ions and showed higher cytotoxicity to HGFs and NOKs than the alloy fabricated from unused powder.


Assuntos
Cromo , Cobalto , Humanos , Pós , Cobalto/química , Cromo/química , Fator A de Crescimento do Endotélio Vascular , Teste de Materiais , Ligas de Cromo/química , Lasers
14.
Proteomics Clin Appl ; 17(3): e2200012, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36349801

RESUMO

PURPOSE: Lung cancer (LC) is the leading cause of cancer-related deaths worldwide, mainly due to late diagnosis and poor prognosis. Saliva is an important source for discovering biomarkers and contains an abundance of biological information. The purpose of this study was to determine whether galactosylation levels of salivary proteins are associated with LC. EXPERIMENTAL DESIGN: First, we analyzed the alterations of the glycopatterns recognized by Bandeiraea Simplicifolia Lectin I (BS-I) in five groups (healthy volunteers [HV]: 28, benign pulmonary disease [BPD]: 27, lung adenocarcinoma [ADC]: 39, squamous cell carcinoma [SCC]: 28, small-cell lung cancer [SCLC]: 22) of 144 saliva samples using lectin microarrays. Pooled samples from each group were subsequently validated by the lectin blotting technique. Finally, the N-glycan profiles of their salivary glycoproteins isolated by the BS-I-magnetic particle conjugates from pooled samples for each group were analyzed by MALDI-TOF/TOF-MS. RESULTS: The results showed that the expression level of galactosylated glycans recognized by BS-I was significantly increased in patients with LC compared with BPD and HV. Receiver operating characteristic (ROC) analysis indicated that the levels of salivary glycopattern recognized by BS-I could discriminate lung disease (BPD, ADC, SCC, and SCLC) and HV with an AUC of 0.700 (95% CI: 0.589-0.812), and discriminate LC and BPD with an AUC of 0.860 (95% CI: 0.763-0.956). Also, the proportion of galactosylated N-glycans in ADC (38.4%), SCC (43.1%), and SCLC (39.5%) increased compared to HV (30.1%) and BPD (33.7%), and two galactosylated N-glycan peaks (m/z 1828.683, 2418.853) could be identified only in the LC groups (ADC, SCC, and SCLC). CONCLUSIONS AND CLINICAL RELEVANCE: These findings could provide crucial information on galactosylated N-linked glycans associated with LC and facilitate the study of LC biomarkers based on precise alterations of galactosylated N-glycans in saliva.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Glicômica , Polissacarídeos/metabolismo , Lectinas/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas e Peptídeos Salivares
15.
Nature ; 612(7940): 503-511, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477535

RESUMO

The neocortex consists of a vast number of diverse neurons that form distinct layers and intricate circuits at the single-cell resolution to support complex brain functions1. Diverse cell-surface molecules are thought to be key for defining neuronal identity, and they mediate interneuronal interactions for structural and functional organization2-6. However, the precise mechanisms that control the fine neuronal organization of the neocortex remain largely unclear. Here, by integrating in-depth single-cell RNA-sequencing analysis, progenitor lineage labelling and mosaic functional analysis, we report that the diverse yet patterned expression of clustered protocadherins (cPCDHs)-the largest subgroup of the cadherin superfamily of cell-adhesion molecules7-regulates the precise spatial arrangement and synaptic connectivity of excitatory neurons in the mouse neocortex. The expression of cPcdh genes in individual neocortical excitatory neurons is diverse yet exhibits distinct composition patterns linked to their developmental origin and spatial positioning. A reduction in functional cPCDH expression causes a lateral clustering of clonally related excitatory neurons originating from the same neural progenitor and a significant increase in synaptic connectivity. By contrast, overexpression of a single cPCDH isoform leads to a lateral dispersion of clonally related excitatory neurons and a considerable decrease in synaptic connectivity. These results suggest that patterned cPCDH expression biases fine spatial and functional organization of individual neocortical excitatory neurons in the mammalian brain.


Assuntos
Regulação da Expressão Gênica , Neocórtex , Protocaderinas , Animais , Camundongos , Interneurônios/metabolismo , Neocórtex/anatomia & histologia , Neocórtex/citologia , Neocórtex/metabolismo , Neurônios/metabolismo , Protocaderinas/genética , Protocaderinas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica
16.
BMC Oral Health ; 22(1): 470, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335339

RESUMO

BACKGROUND: The aim of the study was to investigate whether the citric acid and rough surface have a synergistic effect leading to severe wear behavior of resin composite. MATERIALS AND METHODS: Disk-shaped (Ø15 × 1.5 mm) specimens of resin composite (n = 12) with different initial roughness were prepared. Reciprocating ball-on-flat wear tests were performed under distilled water and citric acid (pH = 5.5) respectively. The coefficient of friction (COF), wear volume loss, and duration of the running-in period were quantified to assess the wear performance. And the values were analyzed with one-way ANOVA (α = 0.05). Regression analysis was applied to examine the influence of Ra values and mediums on the wear data. The wear morphology was analyzed by scanning electron microscopy and a 3D profilometer. RESULTS: The average COF was higher in distilled water than in citric acid but was independent of the surface roughness. For the composite, the volume loss of worn area and running-in period increased with surface roughness when tested under distilled water. However, these increasing trends were not found in citric acid. All specimens exhibited mild wear behavior with low COF and less superficial abrasion in acidic medium. CONCLUSIONS: The effect of initial roughness on wear behavior depends on the medium. In distilled water, resin composites with high initial roughness exhibit a longer running-in time, which eventually leads to a significant increase in material loss. The adverse effects of high roughness can be alleviated by the lubrication of citric acid, which can maintain a mild wear behavior regardless of initial surface roughness.


Assuntos
Resinas Compostas , Água , Humanos , Propriedades de Superfície , Teste de Materiais , Microscopia Eletrônica de Varredura , Ácido Cítrico
17.
Front Immunol ; 13: 1034727, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341458

RESUMO

Abundant microbiota resides in the organs of the body, which utilize the nutrition and form a reciprocal relationship with the host. The composition of these microbiota changes under different pathological conditions, particularly in response to stress and digestive diseases, making the microbial composition and health of the hosts body interdependent. Probiotics are living microorganisms that have demonstrated beneficial effects on physical health and as such are used as supplements to ameliorate symptoms of various digestive diseases by optimizing microbial composition of the gut and restore digestive balance. However, the supplementary effect does not achieve the expected result. Therefore, a targeted screening strategy on probiotic bacteria is crucial, owing to the presence of several bacterial strains. Core bacteria work effectively in maintaining microbiological homeostasis and stabilization in the gastrointestinal tract. Some of the core bacteria can be inherited and acquired from maternal pregnancy and delivery; others can be acquired from contact with the mother, feces, and the environment. Knowing the genera and functions of the core bacteria could be vital in the isolation and selection of probiotic bacteria for supplementation. In addition, other supporting strains of probiotic bacteria are also needed. A comprehensive strategy for mining both core and supporting bacteria before its clinical use is needed. Using metagenomics or other methods of estimation to discern the typically differentiated strains of bacteria is another important strategy to treat dysbiosis. Hence, these two factors are significant to carry out targeted isolation and selection of the functional strains to compose the resulting probiotic preparation for application in both research and clinical use. In conclusion, precise probiotic supplementation, by screening abundant strains of bacteria and isolating specific probiotic strains, could rapidly establish the core microbiota needed to confer resilience, particularly in bacterial dysfunctional diseases. This approach can help identify distinct bacteria which can be used to improve supplementation therapies.


Assuntos
Infecções Bacterianas , Enteropatias , Microbiota , Probióticos , Gravidez , Feminino , Humanos , Probióticos/uso terapêutico , Bactérias
18.
Chin J Integr Med ; 28(12): 1063-1071, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36251140

RESUMO

OBJECTIVE: To examine whether the combination of Naoxintong Capsule with standard care could further reduce the recurrence of ischemic stroke without increasing the risk of severe bleeding. METHODS: A total of 23 Chinese medical centers participated in this trial. Adult patients with a history of ischemic stroke were randomly assigned in a 1:1 ratio using a block design to receive either Naoxintong Capsule (1.2 g orally, twice a day) or placebo in addition to standard care. The primary endpoint was recurrence of ischemic stroke within 2 years. Secondary outcomes included myocardial infarction, death due to recurrent ischemic stroke, and all-cause mortality. The safety of drugs was monitored. Results were analyzed using the intention-to-treat principle. RESULTS: A total of 2,200 patients were enrolled from March 2015 to March 2016, of whom 143 and 158 in the Naoxintong and placebo groups were lost to follow-up, respectively. Compared with the placebo group, the recurrence rate of ischemic stroke within 2 years was significantly lower in the Naoxintong group [6.5% vs. 9.5%, hazard ratio (HR): 0.665, 95% confidence interval (CI): 0.492-0.899, P=0.008]. The two groups showed no significant differences in the secondary outcomes and safety, including rates of severe hemorrhage, cerebral hemorrhage and subarachnoid hemorrhage (P>0.05). CONCLUSION: The combination of Naoxintong Capsule with standard care reduced the 2-year stroke recurrence rate in patients with ischemic stroke without increasing the risk of severe hemorrhage in high-risk patients. (Trial registration No. NCT02334969).


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Adulto , Humanos , Prevenção Secundária/métodos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/prevenção & controle , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/complicações , Método Duplo-Cego , Inibidores da Agregação Plaquetária
19.
Sheng Wu Gong Cheng Xue Bao ; 38(10): 3659-3673, 2022 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-36305401

RESUMO

Glycosphingolipids (GSLs) are widely distributed in the phospholipid bilayer of various cell membranes, which play an important role in maintaining cell membrane stability, and regulate various cellular processes including adhesion, proliferation, apoptosis and recognition, as well as participate in various cellular activities. In addition, GSLs are not only involved in the process of apoptosis, but also regulate multiple signals in tumorigenesis and tumor development. The tumor-associated GSLs are expected to be used as diagnostic markers and immunotherapeutic targets for malignant tumors. These findings have important implications for the study of apoptosis and provide the new direction of tumor therapy. This review summarized the latest research progress of GSLs-mediated apoptosis and its effect on the genesis, development and metastasis of tumor cells. Moreover, we discussed the metabolic pathway of GSLs-mediated apoptosis and its application in tumor therapy, as well as the development prospect of targeted therapy strategies based on GSLs.


Assuntos
Glicoesfingolipídeos , Neoplasias , Humanos , Glicoesfingolipídeos/metabolismo , Apoptose , Membrana Celular , Neoplasias/terapia , Neoplasias/metabolismo
20.
J Mech Behav Biomed Mater ; 135: 105469, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36166938

RESUMO

The wear behavior of dental restorative materials is highly related to the biolubricating medium in the oral environment. Bacteria, along with their metabolic products, are essential substances in the oral cavity and have not been studied as a potential factor affecting lubrication performance during mastication. In this study, the effects of the Streptococcus mutans bacterial cells and their metabolites were investigated on the wear behavior of resin composites, polymer-infiltrated ceramic networks and zirconium-lithium silicate glass-ceramics. A reciprocating friction test and quantitative analysis of the wear morphology were utilized to determine the coefficient of friction (COF) and wear resistance of the test materials. The results showed that the bacterial metabolite medium significantly reduces the COF and wear rate of the three restorative materials and provide better protection against superficial abrasion. When tested under lactic acid medium, a key acid production in bacterial metabolites, similar wear reduction results were observed in the three materials, which confirmed that lactic acid should be accountable for the excellent lubricating property of bacterial metabolites. Furthermore, the resin composite with lower wettability exhibited a more significant wear reduction than the other two materials when lubricating with a bacterial metabolite medium. These findings provide novel insights into the biological basis of lubrication mechanisms in the oral cavity under high-loading and low-velocity conditions.


Assuntos
Streptococcus mutans , Zircônio , Cerâmica , Resinas Compostas , Materiais Dentários , Porcelana Dentária , Ácido Láctico , Lítio , Teste de Materiais , Polímeros , Silicatos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...