Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.147
Filtrar
1.
Front Pharmacol ; 15: 1372421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983922

RESUMO

Background: Sodium/glucose cotransporter-2 inhibitors (SGLT2i) are associated with cardiovascular benefits. The aim of this systematic review and meta-analysis is to summarize the influence of SGLT2i on the incidence of acute kidney injury (AKI), and to ascertain whether it is affected by confounding variables such as age, baseline renal function and concurrent use of renin-angiotensin-aldosterone system inhibitors (RAASi) or mineralocorticoid receptor antagonists (MRA). Methods: PubMed, Embase, and Cochrane Library databases were searched for randomized controlled trials comparing the influence of SGLT2i versus placebo/blank treatment on AKI in the adult population. A fixed-effect model was used if the heterogeneity was not significant; otherwise, a randomized-effect model was used. Results: Eighteen studies comprising 98,989 patients were included. Compared with placebo/blank treatment, treatment with SGLT2i significantly reduced the risk of AKI (risk ratio [RR]: 0.78, 95% confidence interval [CI]: 0.71 to 0.84, p < 0.001; I 2 = 0%). Subgroup analysis suggested consistent results in patients with diabetes, chronic kidney disease, and heart failure (for subgroup difference, p = 0.32). Finally, univariate meta-regression suggested that the influence of SGLT2i on the risk of AKI was not significantly modified by variables such as age (coefficient: 0.011, p = 0.39), baseline estimated glomerular filtration rate (coefficient: -0.0042, p = 0.13) or concomitant use of RAASi (coefficient: 0.0041, p = 0.49) or MRA (coefficient: -0.0020, p = 0.34). Conclusion: SGLT2i may be effective in reducing the risk of AKI, and the effect might not be modified by age, baseline renal function and concurrent use of RAASi or MRA.

2.
Front Pharmacol ; 15: 1430564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983919

RESUMO

Infections caused by multidrug-resistant (MDR) bacteria have become a major challenge for global healthcare systems. The search for antibacterial compounds from plants has received increasing attention in the fight against MDR bacteria. As a medicinal and edible plant, Lophatherum gracile Brongn. (L. gracile) has favorable antibacterial effect. However, the main antibacterial active compound and its antimicrobial mechanism are not clear. Here, our study first identified the key active compound from L. gracile as luteolin. Meanwhile, the antibacterial effect of luteolin was detected by using the broth microdilution method and time-kill curve analysis. Luteolin can also cause morphological structure degeneration and content leakage, cell wall/membrane damage, ATP synthesis reduction, and downregulation of mRNA expression levels of sulfonamide and quinolones resistance genes in multidrug-resistant Escherichia coli (MDR E. coli). Furthermore, untargeted UPLC/Q-TOF-MS-based metabolomics analysis of the bacterial metabolites revealed that luteolin significantly changed riboflavin energy metabolism, bacterial chemotaxis cell process and glycerophospholipid metabolism of MDR E. coli. This study suggests that luteolin could be a potential new food additive or preservative for controlling MDR E. coli infection and spread.

3.
J Cancer ; 15(14): 4656-4667, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006076

RESUMO

Objective: So far, there have been no reports of coumestrol inhibiting colorectal cancer (CRC) through the ferroptosis pathway. This study is to investigate the mechanism of the traditional Chinese medicine monomer coumestrol in the treatment of CRC. Methods: Data on CRC transcriptome sequencing was obtained from the GEO database and TCGA database. Bioinformatics analyses were conducted to screen for CRC prognostic-related key genes and their potential binding monomers in traditional Chinese medicine. The inhibitory effect of coumestrol on CRC cell lines (COLO 205 & HCT 116) was determined using the CCK-8 assay, and cell apoptosis was assessed by flow cytometry. The content of ferrous ions was measured using the Ferrous Ion Content Assay Kit. The expression of ferroptosis pathway-related genes SLC39A8, NCOA4, VDAC2, and NOX2 before and after small interference RNA (siRNA) was examined through real-time PCR and Western blotting. Results: SLC39A8 was found to be associated with CRC clinical progression staging, and its encoded protein ZIP8 may bind to coumestrol. KEGG enrichment analysis suggested that ZIP8 plays a role in iron transmembrane transport and may affect the expression of ferroptosis pathway-related genes NCOA4, VDAC2, and NOX2. Coumestrol was found to induce apoptosis in CRC cell lines by upregulating the expression of ferroptosis pathway-related genes SLC39A8, NCOA4, VDAC2, and NOX2. However, coumestrol was unable to upregulate the expression of ferroptosis pathway-related genes in CRC cell lines after SLC39A8 interference. Conclusion: Coumestrol facilitates apoptosis in CRC cells by interacting with ZIP8 protein via the ferroptosis pathway.

4.
Front Microbiol ; 15: 1431183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006750

RESUMO

Toxoplasma gondii is an obligate intracellular parasite of phylum Apicomplexa that poses a huge threat to pregnant hosts, and induces tragic outcomes for pregnant hosts, fetuses and newborns. However, the molecular mechanism underlying the tragic consequences caused by T. gondii remains to be revealed. In the present study, we applied RNA-seq to study the transcriptomic landscape of the whole reproductive organ of pregnant mice post T. gondii infection, aiming to reveal the key altered biological characters of reproductive organs of pregnant mice that could contribute to the tragic outcomes caused by T. gondii infection. The results of the present study showed that the transcriptome of reproductive organs of pregnant mice was significantly altered by T. gondii infection. A total of 2,598 differentially expressed genes (DEGs) were identified, including 1,449 upregulated genes and 1,149 downregulated genes. Enrichment analysis of the DEGs showed that the significantly altered features of reproductive organs of pregnant mice were excessive inflammatory responses, downregulated metabolism processes, and congenital diseases. The chemotaxis of immune cells in the reproductive organs of infected pregnant mice could also be reshaped by 19 differentially expressed chemokines and 6 differentially expressed chemokine receptors that could contribute to the damages of reproductive organ in pregnant mice. Overall, the findings of present study may help to understand the pathogenic mechanism of the acute T. gondii infection in reproductive organs of pregnant mice, and it could also help to improve toxoplasmosis therapeutics for pregnant individuals.

5.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-39007592

RESUMO

High-throughput DNA sequencing technologies decode tremendous amounts of microbial protein-coding gene sequences. However, accurately assigning protein functions to novel gene sequences remain a challenge. To this end, we developed FunGeneTyper, an extensible framework with two new deep learning models (i.e., FunTrans and FunRep), structured databases, and supporting resources for achieving highly accurate (Accuracy > 0.99, F1-score > 0.97) and fine-grained classification of antibiotic resistance genes (ARGs) and virulence factor genes. Using an experimentally confirmed dataset of ARGs comprising remote homologous sequences as the test set, our framework achieves by-far-the-best performance in the discovery of new ARGs from human gut (F1-score: 0.6948), wastewater (0.6072), and soil (0.5445) microbiomes, beating the state-of-the-art bioinformatics tools and sequence alignment-based (F1-score: 0.0556-0.5065) and domain-based (F1-score: 0.2630-0.5224) annotation approaches. Furthermore, our framework is implemented as a lightweight, privacy-preserving, and plug-and-play neural network module, facilitating its versatility and accessibility to developers and users worldwide. We anticipate widespread utilization of FunGeneTyper (https://github.com/emblab-westlake/FunGeneTyper) for precise classification of protein-coding gene functions and the discovery of numerous valuable enzymes. This advancement will have a significant impact on various fields, including microbiome research, biotechnology, metagenomics, and bioinformatics.


Assuntos
Aprendizado Profundo , Humanos , Biologia Computacional/métodos , Microbiota/genética , Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fatores de Virulência/genética
6.
Front Oncol ; 14: 1278464, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947896

RESUMO

Objective: To explore the value of 18F-fluordeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) semi-quantitative parameters of primary tumor combined with squamous cell carcinoma antigen (SCC-Ag) in predicting lymph node metastasis (LNM) of cervical cancer (FIGO 2018 stage I-II). Materials and Methods: A total of 65 patients with stage I-II cervical cancer underwent 18F-FDG PET/CT were included in our study. Comparing the primary tumor 18F-FDG PET/CT semi-quantitative parameters and SCC-Ag between the LNM group and the non-LNM group. Logistic regression and receiver operating characteristic (ROC) were used to analyze the value of 18F-FDG PET/CT metabolic parameters and SCC-Ag in predicting LNM. Results: There were 14 and 51 patients were classified as having LNM and NLNM. The semi-quantitative parameters, including the maximum standardized uptake value (SUVmax), the mean standardized uptake value (SUVmean), the peak standardized uptake value (SUVpeak), the total lesion glycolysis (TLG), the metabolic tumor volume (MTV) of the tumor and SCC-Ag were all significantly higher in LNM than in NLNM (SUVmax, 16.07 ± 7.81 vs 11.19 ± 4.73, SUVmean, 9.16 ± 3.48 vs 6.29 ± 2.52, SUVpeak, 12.70 ± 5.26 vs 7.65 ± 3.26, MTV, 22.77 ± 12.36 vs 7.09 ± 5.21, TLG, 211.01 ± 154.25 vs 43.38 ± 36.17, SCC-Ag, 5.39 ± 4.56 vs 2.13 ± 2.50, all p<0.01). Logistic regression analysis showed that TLG was an independent predictor of LNM in stage I-II cervical cancer (OR 1.032, 95% CI 1.013-1.052, p<0.01). Moreover, the predictive value of TLG combined with SUVpeak and SCC-Ag increased and the area under the curve increased compared SUVpeak and SCC-Ag. Conclusion: 18F-FDG PET/CT semi-quantitative parameters and SCC-Ag have promise for assessing LNM in stage I-II cervical cancer. TLG of primary tumor provides independent and increasing values in predicting LNM in stage I-II cervical cancer.

7.
Int J Biol Macromol ; : 133168, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950801

RESUMO

Softness is a crucial criterion in assessing the comfort and usability of tissue paper. Flexible fibers contribute to the softness of the tissue paper by allowing the sheets to conform to the contours of the skin without feeling rough or abrasive. This study focuses on developing innovative CGG/APAM/PDA hydrogels with interpenetrating networks consisting of cationic guar gum, anionic polyacrylamide, and polydopamine for cellulase immobilization, aimed at improving bamboo fiber flexibility. Cellulase biomolecules are efficiently immobilized on CGG/APAM/PDA hydrogels through the Schiff base reaction. Immobilized cellulases have a wider pH applicability than free cellulases, good storage stability, and can maintain high relative activity at relatively high temperatures. The treatment of bamboo fibers with immobilized cellulase results in a significant increase in flexibility, reaching 6.90 × 1014 N·m2, which is 7.18 times higher than that of untreated fibers. The immobilization of cellulases using CGG/APAM/PDA hydrogels as carriers results in a substantial enhancement of storage stability, pH applicability, and inter-fiber bonding strength, as well as the capacity to sustain high relative enzymatic activity at elevated temperatures. The immobilization of cellulase within CGG/APAM/PDA interpenetrating network hydrogels presents a viable strategy for enhancing bamboo fiber flexibility, thereby expanding the accessibility of tissue products.

8.
J Asian Nat Prod Res ; : 1-15, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952165

RESUMO

Lycium Barbarum Polysaccharides (LBP) can benefit lipid parameters such as total cholesterol, triglyceride, and high-density lipoprotein levels and upregulate the level of Firmicutes, increase the diversity of gut microbiota and reduce metabolic disorders, finally relieving weight gain of obese rats. But it cannot reverse the outcome of obesity. Over 30 differential metabolites and four pathways are altered by LBP.

9.
Mol Pharm ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949095

RESUMO

Claudin18.2 (CLDN18.2), due to its high expression in various gastric cancer tissues, is considered an optimal target for antitumor drug molecules. In this study, we obtained the labeled compounds of [125I]I-zolbetuximab using the Iodogen method. Under the optimum labeling conditions, the molar activity of [125I]I-zolbetuximab was 1.75 × 102 GBq/µmol, and the labeling efficiency was more than 99%. The labeled compounds exhibited excellent in vitro stability in both phosphate buffer saline (PBS, pH = 7.4) and fetal bovine serum systems (FBS) (radiochemical purity >90% at 72 h). The uptake percentage of [125I]I-zolbetuximab in MKN45-CLDN18.2 cells is 24.69 ± 0.84% after 6 h. The saturation binding assay and specificity assay further demonstrated the high specificity of [125I]I-zolbetuximab for CLDN18.2. The long retention at the tumor site and rapid metabolic clearance at other organ sites of [125I]I-zolbetuximab were observed in small-animal SPECT-CT imaging. The same trend was also observed in the biodistribution study. Due to the excellent targeting ability of zolbetuximab for CLDN18.2, [125I]I-zolbetuximab exhibits strong specific binding and retention with cells and tumors highly expressing CLDN18.2. However, the balance between mAb's longer cycle time in vivo and targeting binding and retention ability should be intensively considered for using this kind of radiopharmaceutical in the diagnosis and treatment of CLDN18.2-positive gastric cancer.

10.
Hypertens Res ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961282

RESUMO

G protein-coupled receptors (GPCRs) mediate cellular responses to a myriad of hormones and neurotransmitters that play vital roles in the regulation of physiological processes such as blood pressure. In organs such as the artery and kidney, hormones or neurotransmitters, such as angiotensin II (Ang II), dopamine, epinephrine, and norepinephrine exert their functions via their receptors, with the ultimate effect of keeping normal vascular reactivity, normal body sodium, and normal blood pressure. GPCR kinases (GRKs) exert their biological functions, by mediating the regulation of agonist-occupied GPCRs, non-GPCRs, or non-receptor substrates. In particular, increasing number of studies show that aberrant expression and activity of GRKs in the cardiovascular system and kidney inhibit or stimulate GPCRs (e.g., dopamine receptors, Ang II receptors, and α- and ß-adrenergic receptors), resulting in hypertension. Current studies focus on the effect of selective GRK inhibitors in cardiovascular diseases, including hypertension. Moreover, genetic studies show that GRK gene variants are associated with essential hypertension, blood pressure response to antihypertensive medicines, and adverse cardiovascular outcomes of antihypertensive treatment. In this review, we present a comprehensive overview of GRK-mediated regulation of blood pressure, role of GRKs in the pathogenesis of hypertension, and highlight potential strategies for the treatment of hypertension. Schematic representation of GPCR desensitization process. Activation of GPCRs begins with the binding of an agonist to its corresponding receptor. Then G proteins activate downstream effectors that are mediated by various signaling pathways. GPCR signaling is halted by GRK-mediated receptor phosphorylation, which causes receptor internalization through ß-arrestin.

11.
Arthritis Rheumatol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982844

RESUMO

OBJECTIVE: There are few existing studies that investigate the risk of systemic lupus erythematosus (SLE) associated with long-term exposure to air pollutants. This study aimed to explore associations between long-term exposure to air pollutants and incident SLE and further evaluate interactions and joint effects of genetic risk and air pollutants. METHODS: A total of 459,815 participants were included from UK Biobank. The concentrations of air pollutants (fine particulate matter with diameter ≤2.5 µm [PM2.5], particulate matter diameter ≤10 µm [PM10], nitrogen dioxide [NO2], and nitrogen oxides [NOx]) were estimated by land-use regression model. We applied Cox proportional hazards model to explore linkages of air pollutants and incident SLE. The polygenic risk score (PRS) was used for further assessing the interactions and joint effects of genetic risk and air pollutants. RESULTS: A total of 399 patients with SLE were identified during a median follow-up of 11.77 years. There were positive associations between air pollutant exposure and incident SLE, as the adjusted hazard ratios were 1.18 (95% confidence interval [95% CI] 1.06-1.32), 1.23 (1.10-1.39), 1.27 (1.14-1.41), and 1.13 (1.03-1.23) for each interquartile range increase in PM2.5, PM10, NO2, and NOx, respectively. Moreover, participants with high genetic risk and high air pollution exposure had the highest risk of incident SLE compared with those with low genetic risk and low air pollution exposure (adjusted hazard ratio: PM2.5, 4.16 [95% CI 2.67-6.49]; PM10, 5.31 [95% CI 3.30,-8.55]; NO2, 5.61 [95% CI 3.45-9.13]; and NOx, 4.80 [95% CI 3.00-7.66]). There was a significant multiplicative interaction between NO2 and PRS. CONCLUSION: Long-term exposure to air pollutants (PM2.5, PM10, NO2, and NOx) may increase the risk of developing SLE.

12.
Heliyon ; 10(12): e32645, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988579

RESUMO

In the present study, we investigated whether baicalin could reduce the damage caused to RAW264.7 cells following infection with H6N6 avian influenza virus. In addition, we studied the expression of autophagy-related genes. The morphological changes in cells were observed by hematoxylin and eosin (H&E) staining, and the inflammatory factors in the cell supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Transmission electron microscopy (TEM) was used to detect the levels of RAW264.7 autophagosomes, and western blotting and immunofluorescence were used to detect the protein expression of autophagy marker LC3. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to detect the mRNA transcription levels of autophagy key factors. The results showed that different doses of baicalin significantly reduced the H6N6 virus-induced damage of RAW264.7 cells. The contents of interleukin (IL)-1ß, IL-2, IL-6, and tumor necrosis factor (TNF)-α in the cell supernatant significantly decreased. In addition, the protein expression of LC3 and Beclin-1, ATG12, ATG5 the mRNA levels were significantly decreased. This study showed that baicalin can reduce cell damage and affect the H6N6-induced autophagy level of RAW264.7 cells.

13.
Animals (Basel) ; 14(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998019

RESUMO

BACKGROUND: Cryptosporidium is a globally distributed zoonotic protozoan parasite in humans and animals. Infection is widespread in dairy cattle, especially in calves, resulting in neonatal enteritis, production losses and high mortality. However, the occurrence of Cryptosporidium spp. in pre- and post-weaned calves in Yunnan Province remains unclear. METHODS: We collected 498 fecal samples from Holstein calves on 10 different farms in four regions of Yunnan Province. Nested PCR and DNA sequencing were used to determine the infection, species and genotypes of Cryptosporidium spp. in these animals. RESULTS: The overall occurrence of Cryptosporidium spp. in Holstein calves was 32.9% (164/498), and the prevalence in pre- and post-weaned calves was 33.5% (106/316) and 31.9% (58/182), respectively. Four Cryptosporidium species were identified in these animals, namely C. bovis (n = 119), C. parvum (n = 23), C. ryanae (n = 20) and C. andersoni (n = 2). Based on sequencing analysis of the 60 kDa glycoprotein gene of C. bovis, C. parvum and C. ryanae, six subtypes of C. bovis (XXVIe, XXVIb, XXVIf, XXVIa XXVIc and XXVId), two subtypes of C. parvum (IIdA19G1 and IIdA18G1) and four subtypes of C. ryanae (XXIf, XXId, XXIe and XXIg) were identified. CONCLUSIONS: These results provide essential information to understand the infection rate, species diversity and genetic structure of Cryptosporidium spp. populations in Holstein pre-weaned and post-weaned calves in Yunnan Province. Further, the presence of IIdA18G1 and IIdA19G1 in C. parvum implies significant animal and public health concerns, which requires greater attention and more preventive measures.

14.
Materials (Basel) ; 17(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38998446

RESUMO

The utilization of 3D printing technology for the fabrication of intricate transparent ceramics overcomes the limitations associated with conventional molding processes, thereby presenting a highly promising solution. In this study, we employed direct ink writing (DIW) to prepare yttrium oxide transparent ceramics using a ceramic slurry with excellent moldability, solid content of 45 vol%, and shear-thinning behavior. A successfully printed transparent yttrium oxide ring measuring 30 mm in diameter, 10 mm in inner diameter, and 0.9 mm in thickness was obtained from the aforementioned slurry. After de-binding and sintering procedures, the printed ceramic exhibited in-line transmittance of 71% at 850 nm. This work not only produced complex yttria transparent ceramics with intricate shapes, but also achieved in-line transmittance that was comparable to that of the CIP method (79%), which can meet certain optical applications.

15.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999027

RESUMO

The whole Hypericum patulum Thunb. plant is utilized in traditional medicine for its properties of clearing heat, detoxifying, soothing meridians, relaxing the liver, and stopping bleeding. In folk medicine, it is frequently used to treat hepatitis, colds, tonsillitis, and bruises. Phytochemical investigation of a 30% ethanol extract of the fresh ripe fruits of H. patulum has resulted in the isolation of two new pinane-type monoterpenoid glycosides 1-2, named patulumside E-F, and three new chain-shaped monoterpenoid glycosides 3-5, named patulumside G-H, J. Their structures were determined using extensive spectroscopic techniques, such as HR-ESI-MS, 1D and 2D NMR spectroscopy, and electronic circular dichroism (ECD) calculation. The anti-inflammatory activities of these compounds were evaluated in the LPS-induced RAW264.7 cells. This research represents the inaugural comprehensive phytochemical study of H. patulum, paving the way for further exploration of monoterpenoid glycosides.


Assuntos
Frutas , Glicosídeos , Hypericum , Monoterpenos , Extratos Vegetais , Hypericum/química , Glicosídeos/química , Glicosídeos/farmacologia , Glicosídeos/isolamento & purificação , Camundongos , Animais , Células RAW 264.7 , Frutas/química , Monoterpenos/química , Monoterpenos/farmacologia , Monoterpenos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Estrutura Molecular , Lipopolissacarídeos/farmacologia , Espectroscopia de Ressonância Magnética , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação
16.
Neurobiol Dis ; 199: 106586, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950712

RESUMO

OBJECTIVE: The glymphatic system serves as a perivascular pathway that aids in clearing liquid and solute waste from the brain, thereby enhancing neurological function. Disorders in glymphatic drainage contribute to the development of vasogenic edema following cerebral ischemia, although the molecular mechanisms involved remain poorly understood. This study aims to determine whether a deficiency in dystrophin 71 (DP71) leads to aquaporin-4 (AQP4) depolarization, contributing to glymphatic dysfunction in cerebral ischemia and resulting in brain edema. METHODS: A mice model of middle cerebral artery occlusion and reperfusion was used. A fluorescence tracer was injected into the cortex and evaluated glymphatic clearance. To investigate the role of DP71 in maintaining AQP4 polarization, an adeno-associated virus with the astrocyte promoter was used to overexpress Dp71. The expression and distribution of DP71 and AQP4 were analyzed using immunoblotting, immunofluorescence, and co-immunoprecipitation techniques. The behavior ability of mice was evaluated by open field test. Open-access transcriptome sequencing data were used to analyze the functional changes of astrocytes after cerebral ischemia. MG132 was used to inhibit the ubiquitin-proteasome system. The ubiquitination of DP71 was detected by immunoblotting and co-immunoprecipitation. RESULTS: During the vasogenic edema stage following cerebral ischemia, a decline in the efflux of interstitial fluid tracer was observed. DP71 and AQP4 were co-localized and interacted with each other in the perivascular astrocyte endfeet. After cerebral ischemia, there was a notable reduction in DP71 protein expression, accompanied by AQP4 depolarization and proliferation of reactive astrocytes. Increased DP71 expression restored glymphatic drainage and reduced brain edema. AQP4 depolarization, reactive astrocyte proliferation, and the behavior of mice were improved. After cerebral ischemia, DP71 was degraded by ubiquitination, and MG132 inhibited the decrease of DP71 protein level. CONCLUSION: AQP4 depolarization after cerebral ischemia leads to glymphatic clearance disorder and aggravates cerebral edema. DP71 plays a pivotal role in regulating AQP4 polarization and consequently influences glymphatic function. Changes in DP71 expression are associated with the ubiquitin-proteasome system. This study offers a novel perspective on the pathogenesis of brain edema following cerebral ischemia.

17.
J Integr Plant Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953746

RESUMO

Aporphine alkaloids have diverse pharmacological activities; however, our understanding of their biosynthesis is relatively limited. Previous studies have classified aporphine alkaloids into two categories based on the configuration and number of substituents of the D-ring and have proposed preliminary biosynthetic pathways for each category. In this study, we identified two specific cytochrome P450 enzymes (CYP80G6 and CYP80Q5) with distinct activities toward (S)-configured and (R)-configured substrates from the herbaceous perennial vine Stephania tetrandra, shedding light on the biosynthetic mechanisms and stereochemical features of these two aporphine alkaloid categories. Additionally, we characterized two CYP719C enzymes (CYP719C3 and CYP719C4) that catalyzed the formation of the methylenedioxy bridge, an essential pharmacophoric group, on the A- and D-rings, respectively, of aporphine alkaloids. Leveraging the functional characterization of these crucial cytochrome P450 enzymes, we reconstructed the biosynthetic pathways for the two types of aporphine alkaloids in budding yeast (Saccharomyces cerevisiae) for the de novo production of compounds such as (R)-glaziovine, (S)-glaziovine, and magnoflorine. This study provides key insight into the biosynthesis of aporphine alkaloids and lays a foundation for producing these valuable compounds through synthetic biology.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38954568

RESUMO

Deep learning methods have recently achieved remarkable performance in vessel segmentation applications, yet require numerous labor-intensive labeled data. To alleviate the requirement of manual annotation, transfer learning methods can potentially be used to acquire the related knowledge of tubular structures from public large-scale labeled vessel datasets for target vessel segmentation in other anatomic sites of the human body. However, the cross-anatomy domain shift is a challenging task due to the formidable discrepancy among various vessel structures in different anatomies, resulting in the limited performance of transfer learning. Therefore, we propose a cross-anatomy transfer learning framework for 3D vessel segmentation, which first generates a pre-trained model on a public hepatic vessel dataset and then adaptively fine-tunes our target segmentation network initialized from the model for segmentation of other anatomic vessels. In the framework, the adaptive fine-tuning strategy is presented to dynamically decide on the frozen or fine-tuned filters of the target network for each input sample with a proxy network. Moreover, we develop a Gaussian-based signed distance map that explicitly encodes vessel-specific shape context. The prediction of the map is added as an auxiliary task in the segmentation network to capture geometry-aware knowledge in the fine-tuning. We demonstrate the effectiveness of our method through extensive experiments on two small-scale datasets of coronary artery and brain vessel. The results indicate the proposed method effectively overcomes the discrepancy of cross-anatomy domain shift to achieve accurate vessel segmentation for these two datasets.

19.
Methods Mol Biol ; 2830: 121-129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977573

RESUMO

Genome-wide association study (GWAS) is widely used to characterize genes or quantitative trait loci (QTLs) associated with preharvest sprouting and seed dormancy. GWAS can identify both previously discovered and novel QTLs across diverse genetic panels. The high-throughput SNP arrays or next-generation sequencing technologies have facilitated the identification of numerous genetic markers, thereby significantly enhancing the resolution of GWAS. Although various methods have been developed, the fundamental principles underlying these techniques remain constant. Here, we provide a basic technological flow to perform seed dormancy assay, followed by GWAS using population structure control, and compared it with previous identified QTLs and genes.


Assuntos
Estudo de Associação Genômica Ampla , Germinação , Dormência de Plantas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum , Estudo de Associação Genômica Ampla/métodos , Triticum/genética , Triticum/crescimento & desenvolvimento , Germinação/genética , Dormência de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Fenótipo
20.
Crit Rev Anal Chem ; : 1-20, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978228

RESUMO

Bladder cancer (BC) is the tenth most common cancer globally, predominantly affecting men. Early detection and treatment are crucial due to high recurrence rates and poor prognosis for advanced stages. Traditional diagnostic methods like cystoscopy and imaging have limitations, leading to the exploration of noninvasive methods such as liquid biopsy. This review highlights the application of biosensors in BC, including electrochemical and optical sensors for detecting tumor markers like proteins, nucleic acids, and other biomolecules, noting their clinical relevance. Emerging therapeutic approaches, such as antibody-drug conjugates, targeted therapy, immunotherapy, and gene therapy, are also explored, the role of biosensors in detecting corresponding biomarkers to guide these treatments is examined. Finally, the review addresses the current challenges and future directions for biosensor applications in BC, highlighting the need for large-scale clinical trials and the integration of advanced technologies like deep learning to enhance diagnostic accuracy and treatment efficacy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...