Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Mol Ther Methods Clin Dev ; 32(3): 101307, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39229455

RESUMO

Macrophage-based cell therapeutics is an emerging modality to treat cancer and repair tissue damage. A reproducible manufacturing and engineering process is central to fulfilling their therapeutic potential. Here, we establish a robust macrophage-manufacturing platform (Mo-Mac) and demonstrate that macrophage functionality can be enhanced by N1-methylpseudouridine (m1Ψ)-modified mRNA. Using single-cell transcriptomic analysis as an unbiased approach, we found that >90% cells in the final product were macrophages while the rest primarily comprised T cells, B cells, natural killer cells, promyelocytes, promonocytes, and hematopoietic stem cells. This analysis also guided the development of flow-cytometry strategies to assess cell compositions in the manufactured product to meet requirements by the National Medical Products Administration. To modulate macrophage functionality, as an illustrative example we examined whether the engulfment capability of macrophages could be enhanced by mRNA technology. We found that efferocytosis was increased in vitro when macrophages were electroporated with m1Ψ-modified mRNA encoding CD300LF (CD300LF-mRNA-macrophage). Consistently, in a mouse model of acute liver failure, CD300LF-mRNA-macrophages facilitated organ recovery from acetaminophen-induced hepatotoxicity. These results demonstrate a GMP-compliant macrophage-manufacturing process and indicate that macrophages can be engineered by versatile mRNA technology to achieve therapeutic goals.

2.
Front Pharmacol ; 15: 1419881, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221140

RESUMO

Backgroud: Thymic atrophy marks the onset of immune aging, precipitating developmental anomalies in T cells. Numerous clinical and preclinical investigations have underscored the regulatory role of Ganoderma lucidum spores (GLS) in T cell development. However, the precise mechanisms underlying this regulation remain elusive. Methods: In this study, a mice model of estradiol benzoate (EB)-induced thymic atrophy was constructed, and the improvement effect of GLS on thymic atrophy was evaluated. Then, we employs multi-omics techniques to elucidate how GLS modulates T cell development amidst EB-induced thymic atrophy in mice. Results: GLS effectively mitigates EB-induced thymic damage by attenuating apoptotic thymic epithelial cells (TECs) and enhancing the output of CD4+ T cells into peripheral blood. During thymic T cell development, sporoderm-removed GLS (RGLS) promotes T cell receptor (TCR) α rearrangement by augmenting V-J fragment rearrangement frequency and efficiency. Notably, biased Vα14-Jα18 rearrangement fosters double-positive (DP) to invariant natural killer T (iNKT) cell differentiation, partially contingent on RGLS-mediated restriction of peptide-major histocompatibility complex I (pMHCⅠ)-CD8 interaction and augmented CD1d expression in DP thymocytes, thereby promoting DP to CD4+ iNKT cell development. Furthermore, RGLS amplifies interaction between a DP subpopulation, termed DPsel-7, and plasmacytoid dendritic cells (pDCs), likely facilitating the subsequent development of double-negative iNKT1 cells. Lastly, RGLS suppresses EB-induced upregulation of Abpob and Apoa4, curbing the clearance of CD4+Abpob+ and CD4+Apoa4+ T cells by mTECs, resulting in enhanced CD4+ T cell output. Discussion: These findings indicate that the RGLS effectively mitigates EB-induced TEC apoptosis and compromised double-positive thymocyte development. These insights into RGLS's immunoregulatory role pave the way for its potential as a T-cell regeneration inducer.

3.
Front Pharmacol ; 15: 1330732, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933667

RESUMO

Ligustrum lucidum W.T. Aiton is an outstanding herb with the homology of medicine and food. Its ripe fruits are traditionally used as an important tonic for kidneys and liver in China. Ligustrum lucidum W.T. Aiton is rich in nutritional components and a variety of bioactive ingredients. A total of 206 compounds have been isolated and identified, they mainly include flavonoids, phenylpropanoids, iridoid glycosides, and triterpenoids. These compounds exert anti-osteoporosis, anti-tumor, liver protective, antioxidant, anti-inflammatory, and immunomodulatory effects. Ligustrum lucidum W.T. Aiton has been traditionally used to treat many complex diseases, including osteoporotic bone pain, rheumatic bone, cancer, related aging symptoms, and so on. In the 2020 Edition of Chinese Pharmacopoeia, there are more than 100 prescriptions containing L. lucidum W.T. Aiton. Among them, some classical preparations including Er Zhi Wan and Zhenqi fuzheng formula, are used in the treatment of various cancers with good therapeutic effects. Additionally, L. lucidum W.T. Aiton has also many excellent applications for functional food, ornamental plants, bioindicator of air pollution, algicidal agents, and feed additives. Ligustrum lucidum W.T. Aiton has rich plant resources. However, the application potential of it has not been fully exploited. We hope that this paper provides a theoretical basis for the high-value and high-connotation development of L. lucidum W.T. Aiton in the future.

4.
Front Pharmacol ; 15: 1390294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720773

RESUMO

Introduction: Ganoderma lucidum (G. lucidum, Lingzhi) has long been listed as a premium tonic that can be used to improve restlessness, insomnia, and forgetfulness. We previously reported that a rat model of sporadic Alzheimer's disease (sAD) that was induced by an intracerebroventricular injection of streptozotocin (ICV-STZ) showed significant learning and cognitive deficits and sleep disturbances. Treatment with a G. lucidum spore extract with the sporoderm removed (RGLS) prevented learning and memory impairments in sAD model rats. Method: The present study was conducted to further elucidate the preventive action of RGLS on sleep disturbances in sAD rats by EEG analysis, immunofluorescence staining, HPLC-MS/MS and Western blot. Results: Treatment with 720 mg/kg RGLS for 14 days significantly improved the reduction of total sleep time, rapid eye movement (REM) sleep time, and non-REM sleep time in sAD rats. The novelty recognition experiment further confirmed that RGLS prevented cognitive impairments in sAD rats. We also found that RGLS inhibited the nuclear factor-κB (NF-κB)/Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammatory pathway in the medial prefrontal cortex (mPFC) in sAD rats and ameliorated the lower activity of γ-aminobutyric acid (GABA)-ergic neurons in the parabrachial nucleus (PBN). Discussion: These results suggest that inhibiting the neuroinflammatory response in the mPFC may be a mechanism by which RGLS improves cognitive impairment. Additionally, improvements in PBN-GABAergic activity and the suppression of neuroinflammation in the mPFC in sAD rats might be a critical pathway to explain the preventive effects of RGLS on sleep disturbances in sAD.

5.
Front Pharmacol ; 15: 1406127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720779

RESUMO

Introduction: Ganoderma lucidum: (G. lucidum, Lingzhi) is a medicinal and edible homologous traditional Chinese medicine that is used to treat various diseases, including Alzheimer's disease and mood disorders. We previously reported that the sporoderm-removed G. lucidum spore extract (RGLS) prevented learning and memory impairments in a rat model of sporadic Alzheimer's disease (sAD), but the effect of RGLS on depression-like behaviors in this model and its underlying molecular mechanisms of action remain unclear. Method: The present study investigated protective effects of RGLS against intracerebroventricular streptozotocin (ICV-STZ)-induced depression in a rat model of sAD and its underlying mechanism. Effects of RGLS on depression- and anxiety-like behaviors in ICV-STZ rats were assessed in the forced swim test, sucrose preference test, novelty-suppressed feeding test, and open field test. Results: Behavioral tests demonstrated that RGLS (360 and 720 mg/kg) significantly ameliorated ICV-STZ-induced depression- and anxiety-like behaviors. Immunofluorescence, Western blot and enzyme-linked immunosorbent assay results further demonstrated that ICV-STZ rats exhibited microglia activation and neuroinflammatory response in the medial prefrontal cortex (mPFC), and RGLS treatment reversed these changes, reflected by the normalization of morphological changes in microglia and the expression of NF-κB, NLRP3, ASC, caspase-1 and proinflammatory cytokines. Golgi staining revealed that treatment with RGLS increased the density of mushroom spines in neurons. This increase was associated with elevated expression of brain-derived neurotrophic protein in the mPFC. Discussion: In a rat model of ICV-STZ-induced sAD, RGLS exhibits antidepressant-like effects, the mechanism of which may be related to suppression of the inflammatory response modulated by the NF-κB/NLRP3 pathway and enhancement of synaptic plasticity in the mPFC.

7.
Biochem Pharmacol ; 223: 116113, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460907

RESUMO

Glioma is one of the most common primary malignant tumors of the central nervous system. Temozolomide (TMZ) is the only effective chemotherapeutic agent, but it easily develops resistance and has unsatisfactory efficacy. Consequently, there is an urgent need to develop safe and effective compounds for glioma treatment. The cytotoxicity of 30 candidate compounds to glioma cells was detected by the CCK-8 assay. Daurisoline (DAS) was selected for further investigation due to its potent anti-glioma effects. Our study revealed that DAS induced glioma cell apoptosis through increasing caspase-3/6/9 activity. DAS significantly inhibited the proliferation of glioma cells by inducing G1-phase cell cycle arrest. Meanwhile, DAS remarkably suppressed the migration and invasion of glioma cells by regulating epithelial-mesenchymal transition. Mechanistically, our results revealed that DAS impaired the autophagic flux of glioma cells at a late stage by mediating the PI3K/AKT/mTOR pathway. DAS could inhibit TMZ-induced autophagy and then significantly promote TMZ chemosensitivity. Nude mice xenograft model revealed that DAS could restrain glioma proliferation and promote TMZ chemosensitivity. Thus, DAS is a potential anti-glioma drug that can improve glioma sensitivity to TMZ and provide a new therapeutic strategy for glioma in chemoresistance.


Assuntos
Benzilisoquinolinas , Neoplasias Encefálicas , Glioma , Camundongos , Animais , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Neoplasias Encefálicas/metabolismo , Glioma/patologia , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Linhagem Celular Tumoral , Apoptose , Resistencia a Medicamentos Antineoplásicos
8.
J Cell Mol Med ; 28(7): e18221, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38509759

RESUMO

Gliomas are the most common tumours in the central nervous system. In the present study, we aimed to find a promising anti-glioma compound and investigate the underlying molecular mechanism. Glioma cells were subjected to the 50 candidate compounds at a final concentration of 10 µM for 72 h, and CCK-8 was used to evaluate their cytotoxicity. NPS-2143, an antagonist of calcium-sensing receptor (CASR), was selected for further study due to its potent cytotoxicity to glioma cells. Our results showed that NPS-2143 could inhibit the proliferation of glioma cells and induce G1 phase cell cycle arrest. Meanwhile, NPS-2143 could induce glioma cell apoptosis by increasing the caspase-3/6/9 activity. NPS-2143 impaired the immigration and invasion ability of glioma cells by regulating the epithelial-mesenchymal transition process. Mechanically, NPS-2143 could inhibit autophagy by mediating the AKT-mTOR pathway. Bioinformatic analysis showed that the prognosis of glioma patients with low expression of CASR mRNA was better than those with high expression of CASR mRNA. Gene set enrichment analysis showed that CASR was associated with cell adhesion molecules and lysosomes in glioma. The nude mice xenograft model showed NPS-2143 could suppress glioma growth in vivo. In conclusion, NPS-2143 can suppress the glioma progression by inhibiting autophagy.


Assuntos
Glioma , Naftalenos , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Serina-Treonina Quinases TOR/metabolismo , Naftalenos/farmacologia
9.
Front Pharmacol ; 15: 1338024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362144

RESUMO

Kaixinsan (KXS) is a noteworthy classical prescription, which consists of four Chinese medicinal herbs, namely Polygalae Radix, Ginseng Radix et Rhizoma, Poria, and Acori Tatarinowii Rhizoma. KXS was initially documented in the Chinese ancient book Beiji Qianjin Yaofang written by Sun Simiao of the Tang Dynasty in 652 A.D. As a traditional Chinese medicine (TCM) prescription, it functions to nourish the heart and replenish Qi, calm the heart tranquilize the mind, and excrete dampness. Originally used to treat amnesia, it is now also effective in memory decline and applied to depression. Although there remains an abundance of literature investigating KXS from multiple aspects, few reviews summarize the features and research, which impedes better exploration and exploitation of KXS. This article intends to comprehensively analyze and summarize up-to-date information concerning the chemical constituents, pharmacology, pharmacokinetics, clinical applications, and safety of KXS based on the scientific literature, as well as to examine possible scientific gaps in current research and tackle issues in the next step. The chemical constituents of KXS primarily consist of saponins, xanthones, oligosaccharide esters, triterpenoids, volatile oils, and flavonoids. Of these, saponins are the predominant active ingredients, and increasing evidence has indicated that they exert therapeutic properties against mental disease. Pharmacokinetic research has illustrated that the crucial exposed substances in rat plasma after KXS administration are ginsenoside Re (GRe), ginsenoside Rb1 (GRb1), and polygalaxanthone III (POL). This article provides additional descriptions of the safety. In this review, current issues are highlighted to guide further comprehensive research of KXS and other classical prescriptions.

10.
Arch Gynecol Obstet ; 309(2): 689-697, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38051371

RESUMO

PURPOSE: The proportion of patients with poor ovarian response (POR) is increasing, but effective treatment remains a challenge. To control the hidden peaks of luteinizing hormone (LH) and premature ovulation for poor responders, this study investigated the efficacy of flexible short protocol (FSP) with gonadotropin-releasing hormone antagonist (GnRH-ant) on trigger day. METHODS: The 662 cycles of POR patients were retrospectively analyzed. The cohort was divided into control and intervention groups. The intervention group (group A) with 169 cycles received a GnRH-ant given on trigger day. The control (group B) with 493 cycles received only FSP. The clinical outcomes of the two groups were compared. RESULTS: Compared with group B, with gonadotropin-releasing hormone antagonist (GnRH-ant) on trigger day in group A the incidences of spontaneous premature ovulation decreased significantly (2.37% vs. 8.72%, P < 0.05). The number of fresh embryo-transfer cycles was 45 in group A and 117 in group B. There were no significant differences in clinical outcomes, including implantation rate, clinical pregnancy rate, live birth rate and the cumulative live birth rate (12.0% vs. 9.34%; 22.22% vs. 21.93%; 17.78% vs. 14.91%; 20.51% vs. 20%, respectively; P > 0.05) between the two group. CONCLUSION: FSP with GnRH-ant addition on trigger day had no effect on clinical outcomes, but could effectively inhibit the hidden peaks of luteinizing hormone (LH) and spontaneous premature ovulation in POR. Therefore, it is an advantageous option for POR women.


Assuntos
Hormônio Liberador de Gonadotropina , Nascimento Prematuro , Gravidez , Feminino , Humanos , Fertilização in vitro/métodos , Estudos Retrospectivos , Indução da Ovulação/métodos , Hormônio Luteinizante/farmacologia , Taxa de Gravidez , Ovulação , Nascimento Prematuro/tratamento farmacológico , Antagonistas de Hormônios/uso terapêutico , Antagonistas de Hormônios/farmacologia
11.
Biomed Chromatogr ; 38(2): e5787, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38038157

RESUMO

Previous studies have found that removing the sporoderm significantly enhanced antitumor and immunoregulatory activities of Ganoderma lucidum spore (GLS) compared with breaking the sporoderm. However, the pharmacokinetics of sporoderm-removed GLS (RGLS) and sporoderm-broken GLS (BGLS) remain elusive. To compare the pharmacokinetic differences between the two products, we developed a UPLC-QqQ MS method for determining nine representative triterpenoid concentrations. Chloramphenicol was used as an internal standard. The samples were separated on a reversed-phase column using acetonitrile-0.1% formic acid and water-0.1% formic acid as mobile phases. Nine triterpenoids were analyzed using multiple reaction monitoring mode. The results showed that the area under the concentration-time curve from dosing to time t of all nine components was increased in RGLS compared with BGLS. And the time to the maximum concentration in BGLS was delayed compared with that of RGLS. These indicated that the absorption of RGLS was better than that of BGLS, and the sporoderm might hinder the absorption of the active components. These results increase our understanding of the bioavailability of BGLS and RGLS and indicate that increased bioavailability is one of the main reasons for the enhanced efficacy of RGLS.


Assuntos
Reishi , Triterpenos , Ratos , Animais , Cromatografia Líquida de Alta Pressão , Esporos Fúngicos/química , Formiatos , Triterpenos/análise
12.
Bioconjug Chem ; 35(2): 174-186, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38050929

RESUMO

Biotin- and digoxigenin (DIG)-conjugated therapeutic drugs are critical reagents used for the development of anti-drug antibody (ADA) assays for the assessment of immunogenicity. The current practice of generating biotin and DIG conjugates is to label a therapeutic antibody with biotin or DIG via primary amine groups on lysine or N-terminal residues. This approach modifies lysine residues nonselectively, which can impact the ability of an ADA assay to detect those ADAs that recognize epitopes located at or near the modified lysine residue(s). The impact of the lysine modification is considered greater for therapeutic antibodies that have a limited number of lysine residues, such as the variable heavy domain of heavy chain (VHH) antibodies. In this paper, for the first time, we report the application of site-specifically conjugated biotin- and DIG-VHH reagents to clinical ADA assay development using a model molecule, VHHA. The site-specific conjugation of biotin or DIG to VHHA was achieved by using an optimized reductive alkylation approach, which enabled the majority of VHHA molecules labeled with biotin or DIG at the desirable N-terminus, thereby minimizing modification of the protein after labeling and reducing the possibility of missing detection of ADAs. Head-to-head comparison of biophysical characterization data revealed that the site-specific biotin and DIG conjugates demonstrated overall superior quality to biotin- and DIG-VHHA prepared using the conventional amine coupling method, and the performance of the ADA assay developed using site-specific biotin and DIG conjugates met all acceptance criteria. The approach described here can be applied to the production of other therapeutic-protein- or antibody-based critical reagents that are used to support ligand binding assays.


Assuntos
Biotina , Lisina , Biotina/química , Digoxigenina/química , Anticorpos , Aminas
13.
Br J Ophthalmol ; 108(4): 607-612, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-37055157

RESUMO

AIM: To evaluate the role of papillary vitreous detachment in the pathogenesis of non-arteritic anterior ischaemic optic neuropathy (NAION) by comparing the features of vitreopapillary interface between NAION patients and normal individuals. METHODS: This study included 22 acute NAION patients (25 eyes), 21 non-acute NAION patients (23 eyes) and 23 normal individuals (34 eyes). All study participants underwent swept-source optical coherence tomography to assess the vitreopapillary interface, peripapillary wrinkles and peripapillary superficial vessel protrusion. The statistical correlations between peripapillary superficial vessel protrusion measurements and NAION were analysed. Two NAION patients underwent standard pars plana vitrectomy. RESULTS: Incomplete papillary vitreous detachment was noted in all acute NAION patients. The prevalence of peripapillary wrinkles was 68% (17/25), 30% (7/23) and 0% (0/34), and the prevalence of peripapillary superficial vessel protrusion was 44% (11/25), 91% (21/23) and 0% (0/34) in the acute, non-acute NAION and control groups, respectively. The prevalence of peripapillary superficial vessel protrusion was 88.9% in the eyes without retinal nerve fibre layer thinning. Furthermore, the number of peripapillary superficial vessel protrusions in the superior quadrant was significantly higher than that in the other quadrants in eyes with NAION, consistent with the more damaged visual field defect regions. Peripapillary wrinkles and visual field defects in two patients with NAION were significantly attenuated within 1 week and 1 month after the release of vitreous connections, respectively. CONCLUSION: Peripapillary wrinkles and superficial vessel protrusion may be signs of papillary vitreous detachment-related traction in NAION. Papillary vitreous detachment may play an important role in NAION pathogenesis.


Assuntos
Disco Óptico , Neuropatia Óptica Isquêmica , Descolamento do Vítreo , Humanos , Neuropatia Óptica Isquêmica/diagnóstico , Neuropatia Óptica Isquêmica/etiologia , Disco Óptico/patologia , Descolamento do Vítreo/complicações , Descolamento do Vítreo/diagnóstico , Descolamento do Vítreo/patologia , Testes de Campo Visual , Tomografia de Coerência Óptica/métodos
14.
Eur J Pharmacol ; 965: 176276, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113966

RESUMO

BACKGROUND: Inflammation is a major contributing factor in myocardial ischemia/reperfusion (I/R) injury, and targeting macrophage inflammation is an effective strategy for myocardial I/R therapy. Though remimazolam is approved for sedation, induction, and the maintenance of general anesthesia in cardiac surgery, its effect on cardiac function during the perioperative period has not been reported. Therefore, this research aimed to explore the impact of remimazolam on inflammation during myocardial ischemia/reperfusion (I/R) injury. METHODS: An in vivo myocardial I/R mice model and an in vitro macrophage inflammation model were used to confirm remimazolam's cardiac protective effect. In vivo, we used echocardiography, hematoxylin and eosin (HE), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining to determine remimazolam's therapeutic effects on myocardial I/R injury and inflammation. In vitro, we employed enzyme-linked immunosorbent assay (ELISA), Western blot, Real-time Quantitative PCR (qPCR), flow cytometry, and immunofluorescence staining to assess inflammatory responses, especially remimazolam's effects on macrophage polarization after I/R. Furthermore, molecular docking was used to identify its potential binding targets on the inflammatory pathway to explore the mechanism of remimazolam. RESULTS: Remimazolam exhibited significant anti-myocardial I/R injury activity by inhibiting macrophage-mediated inflammation to reduce myocardial infarction, enhancing cardiac function. In addition, macrophage depletion counteracted improved cardiac function by remimazolam treatment. Mechanistically, the activated NF-ĸB signaling pathway and phosphorylation of p50 and p65 were repressed for anti-inflammatory effect. Consistently, two binding sites on p50 and p65 were identified by molecular docking to affect their phosphorylation of the Ser, Arg, Asp, and His residues, thus regulating NF-κB pathway activity. CONCLUSION: Our results unveil the therapeutic potential of remimazolam against myocardial I/R injury by inhibiting macrophages polarizing into the M1 type, alleviating inflammation.


Assuntos
Benzodiazepinas , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Camundongos , Animais , NF-kappa B/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Simulação de Acoplamento Molecular , Traumatismo por Reperfusão/metabolismo , Macrófagos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Apoptose
15.
Food Chem X ; 19: 100865, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780253

RESUMO

Traditional Keemun black tea is also known as Congou black tea (CF). Over the last three decades, three other types of Keemun black tea (Jinzhen, JZ; Maofeng, MF; Xiangluo, XL) made by different processing have been introduced into the tea market. Total CF volatile concentrations ranged from 1666.3 to 2185.7 µg/L, followed by XL (1193.5-1916.1 µg/L), JZ (1058.9-1811.0 µg/L), and MF (987.5-1518.0 µg/L) tea infusions. A total of 79 volatiles in tea infusions was identified by two methods, among which fourteen with OAVs > 1 were identified and OAVs proportion of volatiles with flowery, fruity, or sweet notes to those with other notes differed in four Keemun black teas (CF = 6.58:1, MF = 5.16:1, JZ = 4.04:1, XL = 5.11:1). Phenylethyl alcohol oxidation resulted in phenylacetaldehyde formation which is the characteristic odorant in Keemun black tea. We clearly show that changes in tea processing gives the distinctive aroma to different Keemun black teas.

16.
Adv Sci (Weinh) ; 10(32): e2301977, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37824217

RESUMO

Gastric cancer stem cells (GCSCs) are self-renewing tumor cells that govern chemoresistance in gastric adenocarcinoma (GAC), whereas their regulatory mechanisms remain elusive. Here, the study aims to elucidate the role of ATOH1 in the maintenance of GCSCs. The preclinical model and GAC sample analysis indicate that ATOH1 deficiency is correlated with poor GAC prognosis and chemoresistance. ScRNA-seq reveals that ATOH1 is downregulated in the pit cells of GAC compared with those in paracarcinoma samples. Lineage tracing reveals that Atoh1 deletion strongly confers pit cell stemness. ATOH1 depletion significantly accelerates cancer stemness and chemoresistance in Tff1-CreERT2; Rosa26Tdtomato and Tff1-CreERT2; Apcfl/fl ; p53fl/fl (TcPP) mouse models and organoids. ATOH1 deficiency downregulates growth arrest-specific protein 1 (GAS1) by suppressing GAS1 promoter transcription. GAS1 forms a complex with RET, which inhibits Tyr1062 phosphorylation, and consequently activates the RET/AKT/mTOR signaling pathway by ATOH1 deficiency. Combining chemotherapy with drugs targeting AKT/mTOR signaling can overcome ATOH1 deficiency-induced chemoresistance. Moreover, it is confirmed that abnormal DNA hypermethylation induces ATOH1 deficiency. Taken together, the results demonstrate that ATOH1 loss promotes cancer stemness through the ATOH1/GAS1/RET/AKT/mTOR signaling pathway in GAC, thus providing a potential therapeutic strategy for AKT/mTOR inhibitors in GAC patients with ATOH1 deficiency.


Assuntos
Adenocarcinoma , Proteína Vermelha Fluorescente , Neoplasias Gástricas , Animais , Humanos , Camundongos , Adenocarcinoma/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinases TOR/metabolismo
17.
Materials (Basel) ; 16(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834575

RESUMO

Shaking table tests serve as an effective method to simulate landslides triggered by seismic activities. These laboratory experiments necessitate the use of materials that mimic those encountered in real-world scenarios. For this investigation, materials analogous to field conditions for the shaking table tests were formulated using quartz sand, barite powder, iron powder, gypsum, rosin, and alcohol. Within the model test compositions, iron powder, barite powder, and quartz sand acted as aggregates; gypsum functioned as an additive, and a solution of rosin and alcohol was employed as a binder. Employing the orthogonal design method, the physical and mechanical parameters of these analogous materials were ascertained through double-sided shear tests, as well as uniaxial compression and splitting tests. Subsequent analyses included extreme difference and regression assessments targeting the determinants influencing the physical and mechanical characteristics of these materials. The ultimate goal was to determine the optimal mixing ratios for the model test materials. The findings revealed that the physical and mechanical properties of analogous materials at varying ratios span a broad spectrum, fulfilling the criteria for distinct rock model experiments. A thorough examination of the factors impacting the physical and mechanical properties of these materials was undertaken, elucidating their respective influences. Based on the relative significance of each determinant on the mechanical attributes of the analogous materials, dominant factors were identified for a multiple regression analysis, from which the regression equations corresponding to the test ratios were derived.

18.
Foods ; 12(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37372575

RESUMO

Ripeness significantly affects the commercial values and sales of fruits. In order to monitor the change of grapes' quality parameters during ripening, a rapid and nondestructive method of visible-near-infrared spectral (Vis-NIR) technology was utilized in this study. Firstly, the physicochemical properties of grapes at four different ripening stages were explored. Data evidenced increasing color in redness/greenness (a*) and Chroma (C*) and soluble solids (SSC) content and decreasing values in color of lightness (L*), yellowness/blueness (b*) and Hue angle (h*), hardness, and total acid (TA) content as ripening advanced. Based on these results, spectral prediction models for SSC and TA in grapes were established. Effective wavelengths were selected by the competitive adaptive weighting algorithm (CARS), and six common preprocessing methods were applied to pretreat the spectra data. Partial least squares regression (PLSR) was applied to establish models on the basis of effective wavelengths and full spectra. The predictive PLSR models built with full spectra data and 1st derivative preprocessing provided the best values of performance parameters for both SSC and TA. For SSC, the model showed the coefficients of determination for calibration (RCal2) and prediction (RPre2) set of 0.97 and 0.93, respectively, the root mean square error for calibration set (RMSEC) and prediction set (RMSEP) of 0.62 and 1.27, respectively; and the RPD equal to 4.09. As for TA, the optimum values of RCal2, RPre2, RMSEC, RMSEP and RPD were 0.97, 0.94, 0.88, 1.96 and 4.55, respectively. The results indicated that Vis-NIR spectroscopy is an effective tool for the rapid and non-destructive detection of SSC and TA in grapes.

19.
Front Nutr ; 10: 1172526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125037

RESUMO

Background: Early enteral nutrition (EN) is recommended for critically ill patients. However, the impact of early EN on intubated severe trauma patients remains unclear. Methods: Severely traumatized adult patients who received invasive mechanical ventilation (MV) for more than 48 h during intensive care unit (ICU) stay at our institution between 2017 and 2022 were retrospectively included. Early EN was defined as EN initiation ≤48 h from ICU admission and late EN >48 h. Propensity score matching (PSM) analysis was used to compare outcomes between the groups. The primary endpoint was the incidence of ventilator-associated pneumonia (VAP). Multivariable logistic regression analysis was performed to identify independent predictors of delayed EN. Results: For final analysis, 337 intubated severe trauma patients were available, including 204 (60.5%) in the early EN group and 133 (39.5%) in the late EN group. After PSM, early EN patients had a lower incidence of VAP (12.9 vs. 25.8%, p = 0.026) and a shorter length of hospital stay (21 vs. 24 days, p = 0.015) compared to late EN patients. There was no demonstrable difference in mortality between the two groups. Abdominal trauma, massive blood transfusion, and serum albumin were identified as independent risk factors for delayed EN. Conclusion: Early EN decreased the VAP rate and reduced the length of hospital stay in invasively ventilated patients with severe trauma. Abdominal injury, massive blood transfusion and low albumin were associated with delayed EN.

20.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865339

RESUMO

Testis-specific transcript 10 (Tex10) is a critical factor for pluripotent stem cell maintenance and preimplantation development. Here, we dissect its late developmental roles in primordial germ cell (PGC) specification and spermatogenesis using cellular and animal models. We discover that Tex10 binds the Wnt negative regulator genes, marked by H3K4me3, at the PGC-like cell (PGCLC) stage in restraining Wnt signaling. Depletion and overexpression of Tex10 hyperactivate and attenuate the Wnt signaling, resulting in compromised and enhanced PGCLC specification efficiency, respectively. Using the Tex10 conditional knockout mouse models combined with single-cell RNA sequencing, we further uncover critical roles of Tex10 in spermatogenesis with Tex10 loss causing reduced sperm number and motility associated with compromised round spermatid formation. Notably, defective spermatogenesis in Tex10 knockout mice correlates with aberrant Wnt signaling upregulation. Therefore, our study establishes Tex10 as a previously unappreciated player in PGC specification and male germline development by fine-tuning Wnt signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...