Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1367630, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952444

RESUMO

Purpose: To investigate the therapeutic efficiency of a novel drink termed "Ferment" in cases of ulcerative colitis (UC) and its influence on the gut microbiota. Method: In this study, we developed a complex of mixed fruit juice and lactic acid bacteria referred to as Ferment. Ferment was fed to mice for 35 days, before inducing UC with Dextran Sulfate Sodium Salt. We subsequently investigated the gut microbiome composition using 16S rRNA sequencing. Result: After Ferment treatment, mouse body weight increased, and animals displayed less diarrhea, reduced frequency of bloody stools, and reduced inflammation in the colon. Beneficial bacteria belonging to Ileibacterium, Akkermansia, and Prevotellacea were enriched in the gut after Ferment treatment, while detrimental organisms including Erysipelatoclostridium, Dubosiella, and Alistipes were reduced. Conclusion: These data place Ferment as a promising dietary candidate for enhancing immunity and protecting against UC.

2.
Acta Biomater ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821145

RESUMO

The healing of a wound under tension (hereafter, "tension wound") often coincides with the development of hypertrophic scars in clinical settings. Currently, compress bandages offer a potential alternative for the healing of tension wounds; however, their application in surgery is limited due to their prefabricated patch form. To overcome this, a tension-shielding hydrogel system was designed using photocurable catechol-grafted hyaluronic acid and tannic-acid silver nanoparticles (hereafter, "HTA system"). The hydrogel exhibited tension-shielding capacity, reducing wound tension via shape-fixation and ultimately reducing scar formation. The HTA hydrogel exhibited superior photothermal antibacterial efficacy, self-healing properties, and effective dissipation of energy, thereby promoting tissue regeneration. The hydrogel significantly inhibited the mechanotransduction pathway, thus preventing Engrailed-1 activation and reducing the fibrotic response. The HTA hydrogel system, therefore, provides a treatment strategy for tension wounds, burn wounds and other wounds that are prone to form hypertrophic scars via creating a tension-free local environment. STATEMENT OF SIGNIFICANCE: In our study, we presented a wound-dressing hydrogel system (HTA) that exhibit shape-fixing capacity in tension wound model. Here, we designed and modified a tension regulator, applied it to mice, and furthermore, established a tension wound model in mice with adjustable tension. Outcomes showed that the HTA hydrogel system can effectively form a shape-fixed environment on tension wounds and dynamic wounds, thus promoting scarless healing. Additionally, HTA performs injectability, rapid crosslinking, biocompatibility, wet adhesion, hemostasis and photothermal antibacterial properties. We believe this research has various potential clinical applications, including scarless-healing in tension wounds, treatment of acute bleeding, treatment of infected wounds, and even internal organ repair.

3.
J Adv Res ; 55: 89-102, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36849045

RESUMO

INTRODUCTION: Alopecia concerns more than half our adult population. Platelet-rich plasma (PRP) has been applied in skin rejuvenation and hair loss treatment. However, the pain and bleeding during injection and the troublesome for fresh preparation of each action limit PRP's in-depth applying dedication to clinics. OBJECTIVES: We report a temperature-sensitive PRP induced fibrin gel included in a detachable transdermal microneedle (MN) for hair growth. RESULTS: PRP gel interpenetrated with the photocrosslinkable gelatin methacryloyl (GelMA) to realize sustained release of growth factors (GFs) and led to 14% growth in mechanical strength of a single microneedle whose strength reached 1.21 N which is sufficient to penetrate the stratum corneum. PRP-MNs' release of VEGF, PDGF, and TGF-ß were characterized and quantitatively around the hair follicles (HFs) for 4-6 days consecutively. PRP-MNs promoted hair regrowth in mice models. From transcriptome sequencing, PRP-MNs induced hair regrowth through angiogenesis and proliferation. The mechanical and TGF-ß sensitive gene Ankrd1 was significantly upregulated by PRP-MNs treatment. CONCLUSION: PRP-MNs show convenient, minimally invasive, painless, inexpensive manufacture, storable and sustained effects in boosting hair regeneration.


Assuntos
Fibrina , Plasma Rico em Plaquetas , Animais , Camundongos , Temperatura , Cabelo , Peptídeos e Proteínas de Sinalização Intercelular , Fator de Crescimento Transformador beta
4.
Sci Adv ; 9(15): eadf1043, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37043582

RESUMO

Switchable and minimally invasive tissue adhesives have great potential for medical applications. However, on-demand adherence to and detachment from tissue surfaces remain difficult. We fabricated a switchable hydrogel film adhesive by designing pattern-tunable wrinkles to control adhesion. When adhered to a substrate, the compressive stress generated from the bilayer system leads to self-similar wrinkling patterns at short and long wavelengths, regulating the interfacial adhesion. To verify the concept and explore its application, we established a random skin flap model, which is a crucial strategy for repairing severe or large-scale wounds. Our hydrogel adhesive provides sufficient adhesion for tissue sealing and promotes neovascularization at the first stage, and then gradually detaches from the tissue while a dynamic wrinkling pattern transition happens. The gel film can be progressively ejected out from the side margins after host-guest integration. Our findings provide insights into tunable bioadhesion by manipulating the wrinkling pattern transition.


Assuntos
Adesivos , Adesivos Teciduais , Pressão , Hidrogéis
5.
J Nanobiotechnology ; 20(1): 465, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329527

RESUMO

BACKGROUND: Tissue engineering of hair follicles (HFs) has enormous potential for hair loss treatment. However, certain challenges remain, including weakening of the dermal papilla cell (DPC) viability, proliferation, and HF inducibility, as well as the associated inefficient and tedious preparation process required to generate extracellular matrix (ECM)-mimicking substrates for biomolecules or cells. Herein, we utilized gelatin methacryloyl (GelMA) and chitosan hydrogels to prepare scalable, monodispersed, and diameter-controllable interpenetrating network GelMA/chitosan-microcarriers (IGMs) loaded with platelet-rich plasma (PRP) and seeded with DPCs, on a high-throughput microfluidic chip. RESULTS: The ECM-mimicking hydrogels used for IGMs exhibited surface nano-topography and high porosity. Mass production of IGMs with distinct and precise diameters was achieved by adjusting the oil and aqueous phase flow rate ratio. Moreover, IGMs exhibited appropriate swelling and sustained growth factor release to facilitate a relatively long hair growth phase. DPCs seeded on PRP-loaded IGMs exhibited good viability (> 90%), adhesion, spreading, and proliferative properties (1.2-fold greater than control group). Importantly, PRP-loaded IGMs presented a higher hair inducibility of DPCs in vitro compared to the control and IGMs group (p < 0.05). Furthermore, DPC/PRP-laden IGMs were effectively mixed with epidermal cell (EPC)-laden GelMA to form a PRP-loaded DPC/EPC co-cultured hydrogel system (DECHS), which was subcutaneously injected into the hypodermis of nude mice. The PRP-loaded DECHS generated significantly more HFs (~ 35 per site) and novel vessels (~ 12 per site) than the other groups (p < 0.05 for each). CONCLUSION: Taken together, these results illustrate that, based on high-throughput microfluidics, we obtained scalable and controllable production of ECM-mimicking IGMs and DECHS, which simulate an effective micro- and macro-environment to promote DPC bioactivity and hair regeneration, thus representing a potential new strategy for HF tissue engineering.


Assuntos
Quitosana , Plasma Rico em Plaquetas , Animais , Camundongos , Células Cultivadas , Quitosana/metabolismo , Folículo Piloso , Hidrogéis/química , Camundongos Nus , Plasma Rico em Plaquetas/metabolismo , Engenharia Tecidual
6.
Adv Sci (Weinh) ; 9(27): e2202684, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35876402

RESUMO

Due to the abuse of antibiotics and the emergence of multidrug resistant microorganisms, medical devices, and related biomaterials are at high risk of microbial infection during use, placing a heavy burden on patients and healthcare systems. Metal-phenolic networks (MPNs), an emerging organic-inorganic hybrid network system developed gradually in recent years, have exhibited excellent multifunctional properties such as anti-inflammatory, antioxidant, and antibacterial properties by making use of the coordination between phenolic ligands and metal ions. Further, MPNs have received widespread attention in antimicrobial infections due to their facile synthesis process, excellent biocompatibility, and excellent antimicrobial properties brought about by polyphenols and metal ions. In this review, different categories of biomaterials based on MPNs (nanoparticles, coatings, capsules, hydrogels) and their fabrication strategies are summarized, and recent research advances in their antimicrobial applications in biomedical fields (e.g., skin repair, bone regeneration, medical devices, etc.) are highlighted.


Assuntos
Anti-Infecciosos , Antioxidantes , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Inflamatórios , Antioxidantes/farmacologia , Materiais Biocompatíveis , Humanos , Hidrogéis , Metais , Fenóis
7.
J Dermatol ; 48(3): 289-300, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33258150

RESUMO

Androgenetic alopecia is the most common form of hair loss disorder. The features of this process are shortening of the anagen phase in hair cycling and progressive miniaturization of the hair follicle. However, the mechanisms in androgenetic alopecia are still unclear, and the treatment methods are also limited. Therefore, further study on the pathogenesis and new therapies for androgenetic alopecia are urgently needed. In this study, we found that endogenous autophagy was severely impaired, accompanied by increased apoptosis in early catagen-like miniaturized hair follicles from the balding scalps of androgenetic alopecia patients. Moreover, inhibition of autophagy using 3-methyladenine could induce apoptosis, premature hair follicle regression and slow down the hair growth in organ-cultured hair follicles. Taken together, these results suggest that impairment of autophagy could be a potential mechanism in androgenetic alopecia.


Assuntos
Alopecia , Folículo Piloso , Autofagia , Cabelo , Humanos , Miniaturização
8.
Theranostics ; 10(25): 11673-11689, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33052240

RESUMO

Hair regenerative medicine, a promising strategy for the treatment of hair loss, will likely involve the transplantation of autologous hair follicular stem cells (HFSCs) and dermal papilla cells (DPCs) into regions of hair loss. Cyclic hair regeneration results from the periodic partial activation of HFSCs. However, previous studies have not successfully achieved large-scale HFSC expansion in vitro without the use of feeder cells, with a lack of research focused on regulating HFSC fate for hair follicular (HF) regeneration. Hence, an emerging focus in regenerative medicine is the reconstruction of natural extracellular matrix (ECM) regulatory characteristics using biomaterials to generate cellular microenvironments for expanding stem cells and directing their fate for tissue regeneration. Methods: HFSCs were coated with gelatin and alginate using layer-by-layer (LbL) self-assembly technology to construct biomimetic ECM for HFSCs; after which transforming growth factor (TGF)-ß2 was loaded into the coating layer, which served as a sustained-release signal molecule to regulate the fate of HFSCs both in vitro and in vivo. In vitro experiments (cell culture and siRNA) were employed to investigate the molecular mechanisms involved and in vivo implantation was carried out to evaluate hair induction efficiency. Results: Nanoscale biomimetic ECM was constructed for individual HFSCs, which allowed for the stable amplification of HFSCs and maintenance of their stem cell properties. TGF-ß2 loading into the coating layer induced transformation of CD34+ stem cells into highly proliferating Lgr5+ stem cells, similar to the partial activation of HFSCs in HF regeneration. Thus, LbL coating and TGF-ß2 loading partially reconstructed the quiescent and activated states, respectively, of stem cells during HF regeneration, thereby mimicking the microenvironment that regulates stem cell fate for tissue regeneration during HF cycling. Improved HF regeneration was achieved when the two HFSC states were co-transplanted with neonatal mouse dermal cells into nude mice. Conclusion: This study provides novel methods for the construction of stem cell microenvironments and experimental models of HF regeneration for the treatment of hair loss.


Assuntos
Alopecia/terapia , Folículo Piloso/citologia , Medicina Regenerativa/métodos , Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia , Alginatos/química , Alginatos/metabolismo , Alopecia/patologia , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Engenharia Celular/métodos , Células Cultivadas , Microambiente Celular/fisiologia , Modelos Animais de Doenças , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Gelatina/química , Gelatina/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Cultura Primária de Células , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Transplante Autólogo/métodos
9.
Theranostics ; 10(3): 1454-1478, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31938074

RESUMO

Hair regeneration has long captured researchers' attention because alopecia is a common condition and current therapeutic approaches have significant limitations. Dermal papilla (DP) cells serve as a signaling center in hair follicles and regulate hair formation and cycling by paracrine secretion. Secreted EVs are important signaling mediators for intercellular communication, and DP-derived extracellular vesicles (DP-EVs) may play an important role in hair regeneration. However, the instability of EVs in vivo and their low long-term retention after transplantation hinder their use in clinical applications. Methods: Human DP-EVs were encapsulated in partially oxidized sodium alginate (OSA) hydrogels, yielding OSA-encapsulated EVs (OSA-EVs), which act as a sustained-release system to increase the potential therapeutic effect of DP-EVs. The ability of the OSA-EVs to protect protein was assessed. The hair regeneration capacity of OSA-EVs, as well as the underlying mechanism, was explored in hair organ culture and a mouse model of depilation. Results: The OSA-EVs were approximately 100 µm in diameter, and as the hydrogel degraded, DP-EVs were gradually released. In addition, the hydrogel markedly increased the stability of vesicular proteins and increased the retention of EVs in vitro and in vivo. The OSA-EVs significantly facilitated proliferation of hair matrix cells, prolonged anagen phase in cultured human hairs, and accelerated the regrowth of back hair in mice after depilation. These effects may be due to upregulation of hair growth-promoting signaling molecules such as Wnt3a and ß-catenin, and downregulation of inhibitory molecule BMP2. Conclusion: This study demonstrated that OSA hydrogels promote the therapeutic effects of DP-EVs, and indicate that our novel OSA-EVs could be used to treat alopecia.


Assuntos
Alopecia/tratamento farmacológico , Vesículas Extracelulares/química , Folículo Piloso/fisiologia , Microgéis/uso terapêutico , Regeneração/efeitos dos fármacos , Adulto , Alginatos/química , Animais , Células Cultivadas , Preparações de Ação Retardada/uso terapêutico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
10.
Front Cell Dev Biol ; 8: 593638, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425897

RESUMO

The application of dermal papilla cells to hair follicle (HF) regeneration has attracted a great deal of attention. However, cultured dermal papilla cells (DPCs) tend to lose their capacity to induce hair growth during passage, restricting their usefulness. Accumulating evidence indicates that DPCs regulate HF growth mainly through their unique paracrine properties, raising the possibility of therapies based on extracellular vesicles (EVs). In this study, we explored the effects of EVs from high- and low-passage human scalp follicle dermal papilla cells (DP-EVs) on activation of hair growth, and investigated the underlying mechanism. DP-EVs were isolated by ultracentrifugation and cultured with human scalp follicles, hair matrix cells (MxCs), and outer root sheath cells (ORSCs), and we found low-passage DP-EVs accelerated HF elongation and cell proliferation activation. High-throughput miRNA sequencing and bioinformatics analysis identified 100 miRNAs that were differentially expressed between low- (P3) and high- (P8) passage DP-EVs. GO and KEGG pathway analysis of 1803 overlapping target genes revealed significant enrichment in the BMP/TGF-ß signaling pathways. BMP2 was identified as a hub of the overlapping genes. miR-140-5p, which was highly enriched in low-passage DP-EVs, was identified as a potential regulator of BMP2. Direct repression of BMP2 by miR-140-5p was confirmed by dual-luciferase reporter assay. Moreover, overexpression and inhibition of miR-140-5p in DP-EVs suppressed and increased expression of BMP signaling components, respectively, indicating that this miRNA plays a critical role in hair growth and cell proliferation. DP-EVs transport miR-140-5p from DPCs to epithelial cells, where it downregulates BMP2. Therefore, DPC-derived vesicular miR-140-5p represents a therapeutic target for alopecia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...