Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(24): 12767-12777, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38845086

RESUMO

In this study, we prepared a multicolor structural-fluorescent CdS-PEGDA photonic crystal hydrogel (SFC-CPH) with a dual display mode, which has two different optical states: structural color mode and fluorescent color mode. SFC-CPH displays structural color mode under visible light and fluorescent color mode under ultraviolet light. Initially, monodisperse CdS colloidal particles were synthesized via a hydrothermal method, leading to the self-assembly of a photonic crystal template. The high refractive index of CdS contributes to the photonic crystals' low-angle dependence and vivid structural colors. Then, a variety of fluorescent molecules were doped into poly(ethylene glycol) diacrylate (PEGDA) hydrogel and combined with photonic crystals with distinct structural colors to prepare three distinct colors of SFC-CPH. We also investigated the optical characteristics and surface properties of these photonic crystal hydrogels. Based on these dual-mode display characteristics, we designed several dual-mode display patterns and a method for information encoding. The unique property of this photonic crystal hydrogel material suggests its substantial potential for applications in information storage, security, and encoding, offering innovative avenues in the realm of information display.

2.
Langmuir ; 38(46): 14387-14399, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36351291

RESUMO

In this study, we fabricate magnetic-fluorescent responsive Janus photonic crystal beads (JPCBs) based on poly(styrene-methyl methacrylate-acrylic acid) (p(St-MMA-AA)) colloidal nanoparticles, Fe3O4, and photobase generators used for self-destructive anti-counterfeiting. We synthesize two kinds of photobase generators that can react with fluorescamine to produce various fluorescence colors. A microfluidic method is used to obtain the Janus photonic crystal beads. The upper portions of the JPCBs are photonic crystals assembled with colloidal spheres, whereas the Fe3O4 settles down to the bottom of the JPCBs due to its higher density. Photobase generators are distributed in photonic crystal gaps. Because of the magnetism of the Fe3O4, the JPCBs could be flipped from one side to the other in the presence of a magnet. After being exposed to UVC light and fluorescamine, the JPCBs can fluoresce under UVA light. Then, we create Janus microbeads arrays with various types of beads and apply them to the visitor card, bracelet, and box label to provide irreversible and self-destructive anti-counterfeiting. The JPCBs are capable of being encoded and angle-independently displayed, which are crucial to their applications in anti-counterfeiting, information coding, and array display.

3.
ACS Appl Mater Interfaces ; 12(18): 20867-20873, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32290649

RESUMO

Patterned colloidal crystals with stimuli-responsive materials provide sensitive and versatile means for investigating the varying ambiance of heat, light, electricity, magnetism, and stress. However, it remains a challenge to integrate stimuli-responsive materials with colloidal crystals by a simple and efficient method, thus restricting them from being used in general applications. Inspired from chameleons, we present a facile yet high-quality approach for the fabrication of the assembly of colloidal nanoparticles based on the hydrophilic-modified thermosensitive films. Various kinds of integral thermosensitive structural colored (TSSC) films are simply prepared in a high-quality screen on a large scale, with low cost, angle independence, and excellent flexibility. Simply turning on the near-infrared (NIR) laser brings heat to the irradiated region to increase the temperature. Integration of the multi-colored photonic bandgap (PBG) of the thermal-sensitive colloidal crystal and flexible anti-counterfeit labels into the NIR light exciting screens can change the intensity of PBG obviously. This advanced technology not only provides an efficient strategy for the preparation of colloidal crystal but also demonstrates a highly thermosensitive structural colored screen that has great prospect for information storage, anticounterfeiting, and real-time display materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...