Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Front Public Health ; 12: 1412884, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220441

RESUMO

Background: Respiratory infections are common in the pediatric population. Preschoolers, especially those in kindergarten and 3-6 years old, are highly vulnerable to various respiratory infections. Objective: To investigate the efficacy of indoor mask-wearing in mitigating respiratory infections in preschoolers in a real-world campus setting. Methods: The study was conducted over a 115-day period in a kindergarten. Eligible children were assigned into study and control groups. The study group wore masks indoors but not outdoors, and the control group did not wear masks in either setting. We used a questionnaire to collect participant information, including age, height, weight, monthly dietary living expenses, family annual income, parent education level, primary caregiver, number of family members, and number of children under 6 years of age in the household. Incidences of clinical respiratory infections were recorded. We calculated the relative risk and analyzed the relationship between mask-wearing and respiratory infections by inter-group comparison, logistic regression, and Cox regression analyses. Results: A total of 135 preschoolers were included, with 35 and 100 preschoolers in the study and control groups, respectively. Baseline comparisons showed a significant difference in the number of children under 6 years old in the household between the two groups. Mask-wearing did not significantly reduce the risk of respiratory infections (RR = 1.086, 95% CI: 0.713, 1.435). Logistic and Cox regression analyses also showed no significant relationship between mask-wearing and occurrence of respiratory infections after controlling for potential confounders (OR = 0.816, 95% CI: 0.364, 1.826, and HR = 0.845, 95% CI: 0.495, 1.444). Conclusion: Indoor mask-wearing did not reduce the incidence of respiratory infections in preschoolers in a real-world campus setting. However, this study included a small number of preschoolers and observed them for a short period of time. Preschoolers were instructed to wear masks only when indoors. These factors could lead to bias and limit the generalizability of the study results.


Assuntos
Máscaras , Infecções Respiratórias , Humanos , Máscaras/estatística & dados numéricos , Infecções Respiratórias/prevenção & controle , Infecções Respiratórias/epidemiologia , Pré-Escolar , Masculino , Feminino , Estudos de Coortes , Criança , Inquéritos e Questionários , Incidência
2.
Am J Cancer Res ; 14(8): 3733-3756, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39267679

RESUMO

RNA-binding proteins (RBPs) play a crucial role in the biological processes of liver hepatocellular carcinoma (LIHC). Peptidyl-prolyl cis-trans isomerase H (PPIH), an RBP, possesses prolyl isomerase activity and functions as a protein chaperone. The relationship between PPIH and LIHC has not yet been fully elucidated. This study elucidated potential mechanisms through which PPIH affects the prognosis of LIHC. Bioinformatics analysis and in vitro experiments revealed that PPIH expression was higher in LIHC tissues than in normal tissues. PPIH was identified as an independent prognostic factor, with high PPIH expression being associated with worse prognoses. Moreover, PPIH increased the m6A RNA methylation level and promoted cell proliferation by modulating DNA replication and the expression of cell cycle-related genes in LIHC cells. Bioinformatics analysis also revealed that PPIH expression increased immune cell infiltration and the expression of immune checkpoint proteins. Collectively, these findings indicate that PPIH might promote LIHC progression by enhancing the m6A RNA methylation level, increasing cell proliferation, and altering the tumor immune microenvironment. Our study demonstrates that PPIH, as a poor prognostic factor, may lead to LIHC malignancy through multiple pathways. Further in-depth research on this topic is warranted.

3.
Angew Chem Int Ed Engl ; : e202415300, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285259

RESUMO

Electrochemical nitrate reduction reaction (NO3-RR) has promising prospects for green synthesis of ammonia and environmental remediation. However, the performance of catalysts at high current density usually suffers from the high energy barrier for the nitrate (NO3-) to nitrite (NO2-) and the competitive hydrogen evolution. Herein, we proposed a two-step relay mechanism through spontaneous redox reaction followed electrochemical reaction by introducing low-valence Fe species into Ni2P nanosheets to significantly enhance the NO3-RR performance at industrial current density. The existence of low-valence Fe species bypasses the NO3- to NO2- step through the spontaneous redox with NO3- to produce NO2- and Fe2O3, regulates the electronic structure of Ni2P to reduce the barrier of NO2- to NH3, thirdly prohibits the hydrogen evolution by consuming the excess active hydrogen through reduction of Fe2O3 to recover low-valence Fe species. The triple regulations via Fe redox during the two-step relay reactions guarantee the Fe-Ni2P@NF high ammonia yield of 120.1 mg h-1 cm-2 with Faraday efficiency of more than 90% over a wide potential window and a long-term stability of more than 130 h at ~1000 mA cm-2. This work provides a new strategy to realize the design and synthesis of nitrate reduction electrocatalysts at high current densities.

4.
Angew Chem Int Ed Engl ; : e202414149, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237460

RESUMO

Metal clusters, due to their small dimensions, contain a high proportion of surface atoms, thus possessing a significantly improved catalytic activity compared with their bulk counterparts and nanoparticles. Defective and modified carbon supports are effective in stabilizing metal clusters, however, the synthesis of isolated metal clusters still requires multiple steps and harsh conditions. Herein, we develop a C60 fullerene-driven spontaneous metal deposition process, where C60 serves as both a reductant and an anchor, to achieve uniform metal (Rh, Ir, Pt, Pd, Au and Ru) clusters without the need for any defects or functional groups on C60. Density functional theory calculations reveal that C60 possesses multiple strong metal adsorption sites, which favors stable and uniform deposition of metal atoms. In addition, owing to the electron-withdrawing properties of C60, the electronic structures of metal clusters are effectively regulated, not only optimizing the adsorption behavior of reaction intermediates but also accelerating the kinetics of hydrogen evolution reaction. The synthesized Ru/C60-300 exhibits remarkable performance for hydrogen evolution in an alkaline condition. This study demonstrates a facile and efficient method for synthesizing effective fullerene-supported metal cluster catalysts without any pretreatment and additional reducing agent.

5.
Biomed Pharmacother ; 179: 117292, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39151314

RESUMO

A type of colorectal cancer (CRC),Colitis-associated colorectal cancer (CAC), is closely associated with chronic inflammation and gut microbiota dysbiosis. Berberine (BBR) has a long history in the treatment of intestinal diseases, which has been reported to inhibit colitis and CRC. However, the mechanism of its action is still unclear. Here, this study aimed to explore the potential protective effects of BBR on azoxymethane (AOM)/dextransulfate sodium (DSS)-induced colitis and tumor mice, and to elucidate its potential molecular mechanisms by microbiota, genes and metabolic alterations. The results showed that BBR inhibited the gut inflammation and improved the function of mucosal barrier to ameliorate AOM/DSS-induced colitis. And BBR treatment significantly reduced intestinal tumor development and ki-67 expression of intestinal tissue along with promoted apoptosis. Through microbiota analysis based on the 16 S rRNA gene, we found that BBR treatment improved intestinal microbiota imbalance in AOM/DSS-induced colitis and tumor mice, which were characterized by an increase of beneficial bacteria, for instance Akkermanisa, Lactobacillus, Bacteroides uniformis and Bacteroides acidifaciens. In addition, transcriptome analysis showed that BBR regulated colonic epithelial signaling pathway in CAC mice particularly by tryptophan metabolism and Wnt signaling pathway. Notably, BBR treatment resulted in the enrichment of amino acids metabolism and microbiota-derived SCFA metabolites. In summary, our research findings suggest that the gut microbiota-amino acid metabolism-Wnt signaling pathway axis plays critical role in maintaining intestinal homeostasis, which may provide new insights into the inhibitory effects of BBR on colitis and colon cancer.

6.
Int J Biol Macromol ; 279(Pt 1): 135175, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39214204

RESUMO

Sustainable and environment friendly natural-based adhesive has been considered as an optimum alternative of industrial adhesive which is non-renewable and harmful to health. Cellulose is the most abundant natural polymer in nature and has potential applications in the field of adhesives. However, the inherent hydrophilic nature of cellulose-based adhesive significantly challenges its use in high humidity environments. In this paper, a highly hydrophobic and anti-swelling cellulose-based adhesive was prepared by epoxy modification of microcrystalline cellulose (MCC). The simultaneous enhancement of adhesive and cohesive properties is achieved through the reaction of epoxy groups with the hydroxyl groups from the wood and adhesive during the hot-pressing process. Prepared adhesive has excellent properties in extremely humid environments. The dry bonding strength of the prepared adhesive reached 6.02 ± 0.26 MPa, while the wet bonding strength was 4.78 ± 0.21 MPa after immersed in water at 63 °C for 3 h. Furthermore, the bonding strength remained largely stable in 90 % atmospheric humidity. The adhesive has a certain universality, which can bond to substrates such as aluminium, iron, and glass. This study presents an innovative approach to the manufacturing of cellulose-based adhesive with enhanced bonding performance and exceptional water resistance.

7.
Clin Exp Med ; 24(1): 206, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207564

RESUMO

Liver cancer stem cells (LCSCs) are responsible for recurrence, metastasis, and drug resistance in liver cancer. However, the genes responsible for inducing LCSCs have not been fully identified. Based on our previous study, we found that tescalcin (TESC), a calcium-binding EF hand protein that plays a crucial role in chromatin remodeling, transcriptional regulation, and epigenetic modifications, was up-regulated in LCSCs of spheroid cultures. By searching the Cancer Genome Atlas, International Cancer Genome Consortium, Human Protein Atlas, and Kaplan-Meier Plotter databases, we found that TESC expression was significantly elevated in liver cancer compared with that in normal liver tissue and was predictive of a decreased overall survival rate. Multivariate Cox analysis revealed TESC to be an independent prognostic factor for survival. High TESC expression was positively associated with cancer stem cell pathways, cancer stem cell surface markers, stemness transcription factors, epithelial-mesenchymal transition (EMT) factors, immune checkpoint proteins, and various cancer-related biological processes in liver cancer. Furthermore, TESC was implicated as promoting cancer stem cell properties through its influence on EMT. We demonstrated that TESC is a novel stemness-related gene that can serve as an independent prognostic factor for liver cancer.


Assuntos
Proteínas de Ligação ao Cálcio , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Humanos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Prognóstico , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Masculino , Movimento Celular , Transição Epitelial-Mesenquimal , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral
8.
J Hazard Mater ; 478: 135551, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39154484

RESUMO

Microplastics (MPs) pollution in freshwater poses a risk to various ecosystems and health security. In 2018, the Chinese government banned fishing since 2018 in the Three Gorges Reservoir (TGR), but the fate and risk of MPs in wild fish remain unclear. Therefore, a detailed investigation was conducted into the occurrence of MPs in 18 wild fish species in the TGR using a Micro Fourier Transform Infrared Spectrometer, and the trophic transfer and risks were assessed. MPs in fish were aged, with abundances ranging from 0.68 ± 0.98 to 4.00 ± 2.12 items/individual. Most particles were less than 1 mm in size (73.4 %), with fibers being the dominant shape (48.9 %) and transparent as the dominant color (35 %). Polyethylene (PE) was the most prevalent type. The bioconcentration factor (BCF), bioaccumulation factor (BAF), trophic magnification factor (TMF) and polymer hazard index (PHI) were low, suggesting no trophic transfer and a low risk of MPs. The BAF may provide a more reasonable description of the degree of enrichment of MPs, and 'items/individual' or 'g/individual' can be used to describe MPs concentrations in fish. This study proposes new insights and prospectives that can help researchers better understand MPs enrichment in fish across various trophic levels.


Assuntos
Monitoramento Ambiental , Peixes , Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Animais , Poluentes Químicos da Água/análise , China , Peixes/metabolismo , Medição de Risco , Bioacumulação , Cadeia Alimentar , Polietileno
9.
Channels (Austin) ; 18(1): 2393088, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39169878

RESUMO

Mechanosensitive ion channel Piezo1 is known to mediate a variety of inflammatory pathways and is also involved in the occurrence and development of many orthopedic diseases. Although its role in the inflammatory mechanism of knee osteoarthritis (KOA) has been reported, a systematic explanation is yet to be seen. This article aims to summarize the role of inflammatory responses in the pathogenesis of KOA and elucidate the mechanism by which the Piezo1-mediated inflammatory response contributes to the pathogenesis of KOA, providing a theoretical basis for the prevention and treatment of knee osteoarthritis. The results indicate that in the mechanism leading to knee osteoarthritis, Piezo1 can mediate the inflammatory response through chondrocytes and synovial cells, participating in the pathological progression of KOA. Piezo1 has the potential to become a new target for the prevention and treatment of this disease. Additionally, as pain is one of the most severe manifestations in KOA patients, the inflammatory response mediated by Piezo1, which causes the release of inflammatory mediators and pro-inflammatory factors leading to pain, can be further explored.


Assuntos
Inflamação , Canais Iônicos , Osteoartrite do Joelho , Canais Iônicos/metabolismo , Humanos , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Inflamação/metabolismo , Animais , Condrócitos/metabolismo , Mecanotransdução Celular
10.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39201387

RESUMO

In the avian species, genetic modification by cell nuclear transfer is infeasible due to its unique reproductive system. The in vitro primordial germ cell modification approach is difficult and cumbersome, although it is the main method of genetic modification in chickens. In the present study, the adenoviral CRISPR/Cas9 vector was directly microinjected into the dorsal aorta of chicken embryos to achieve in vivo genetic modification. The results demonstrated that keratin 75-like 4 (KRT75L4), a candidate gene crucial for feather development, was widely knocked out, and an 8bp deletion was the predominant mutation that occurred in multiple tissues in chimeras, particularly in the gonad (2.63-11.57%). As we expected, significant modification was detected in the sperm of G0 (0.16-4.85%), confirming the potential to generate homozygous chickens and establishing this vector as a simple and effective method for genetic modification in avian species.


Assuntos
Adenoviridae , Aorta , Sistemas CRISPR-Cas , Galinhas , Vetores Genéticos , Animais , Embrião de Galinha , Vetores Genéticos/genética , Galinhas/genética , Adenoviridae/genética , Aorta/metabolismo , Edição de Genes/métodos , Masculino
11.
Vet Res ; 55(1): 86, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970119

RESUMO

H7N9 subtype avian influenza viruses (AIVs) cause 1567 human infections and have high mortality, posing a significant threat to public health. Previously, we reported that two avian-derived H7N9 isolates (A/chicken/Eastern China/JTC4/2013 and A/chicken/Eastern China/JTC11/2013) exhibit different pathogenicities in mice. To understand the genetic basis for the differences in virulence, we constructed a series of mutant viruses based on reverse genetics. We found that the PB2-E627K mutation alone was not sufficient to increase the virulence of H7N9 in mice, despite its ability to enhance polymerase activity in mammalian cells. However, combinations with PB1-V719M and/or PA-N444D mutations significantly enhanced H7N9 virulence. Additionally, these combined mutations augmented polymerase activity, thereby intensifying virus replication, inflammatory cytokine expression, and lung injury, ultimately increasing pathogenicity in mice. Overall, this study revealed that virulence in H7N9 is a polygenic trait and identified novel virulence-related residues (PB2-627K combined with PB1-719M and/or PA-444D) in viral ribonucleoprotein (vRNP) complexes. These findings provide new insights into the molecular mechanisms underlying AIV pathogenesis in mammals, with implications for pandemic preparedness and intervention strategies.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Mutação , Infecções por Orthomyxoviridae , Proteínas Virais , Animais , Camundongos , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/veterinária , Virulência , Feminino , Proteínas Virais/genética , Proteínas Virais/metabolismo , Camundongos Endogâmicos BALB C , Replicação Viral
12.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(4): 553-561, 2024 Apr 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39019784

RESUMO

OBJECTIVES: Age-related cataract is the most common type of adult cataract and a leading cause of blindness. Currently, there are few reports on the establishment of animal models for age-related cataract. During the experimental breeding of Microtus fortis (M. fortis), we first observed that M. fortis aged 12 to 15 months could naturally develop cataracts. This study aims to explore the possibility of developing them as an animal model for age-related cataract via identifing and analyzing spontaneous cataract in M. fortis. METHODS: The 12-month-old healthy M. fortis were served as a control group and 12-month-old cataractous M. fortis were served as an experimental group. The lens transparency was observed using the slit-lamp biomicroscope. Hematoxylin and eosin staining was used to detect pathological changes in the lens. Biochemical detection methods were applied to detect blood routine, blood glucose levels, the serum activities of superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in both groups. Finally, real-time RT-PCR was used to detect the transcription levels of cataract-related genes in the lens of 2 groups. RESULTS: Compared with the control group, the lens of cataract M. fortis showed severely visible opacity, the structure of lens was destroyed seriously, and some pathological damage, such as swelling, degeneration/necrosis, calcification, hyperplasia, and fiber liquefaction were found in lens epithelial cells (LECs). The fibrous structure was disorganized and irregularly distributed with morgagnian globules (MGs) aggregated in the degenerated lens fibers. There was no statistically significant difference in blood glucose levels between the experimental and control groups (P>0.05). However, white blood cell (WBC) count (P<0.05), lymphocyte count (P<0.01), and lymphocyte ratio (P<0.05) were significantly decreased, while neutrophil percentage (P<0.05) and monocyte ratio (P<0.01) were significantly increased. The serum activities of SOD and GSH-Px (both P<0.05) were both reduced. The mRNAs of cataract-related genes, including CRYAA, CRYBA1, CRYBB3, Bsfp1, GJA3, CRYBA2, MIP, HspB1, DNase2B, and GJA8, were significantly downregultaed in the lenses of the experimental group (all P<0.05). CONCLUSIONS: There are significant differences in lens pathological changes, peroxidase levels, and cataract-related gene expression between cataract and healthy M. fortis. The developed cataract spontaneously in M. fortis is closely related to age, the cataract M. fortis might be an ideal animal model for the research of age-related cataract.


Assuntos
Arvicolinae , Catarata , Glutationa Peroxidase , Cristalino , Superóxido Dismutase , Animais , Catarata/genética , Catarata/patologia , Catarata/etiologia , Cristalino/patologia , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/sangue , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Envelhecimento , Modelos Animais de Doenças
13.
BMC Plant Biol ; 24(1): 650, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977959

RESUMO

Modern intensive cropping systems often contribute to the accumulation of phenolic acids in the soil, which promotes the development of soilborne diseases. This can be suppressed by intercropping. This study analyzed the effects of intercropping on Fusarium wilt based on its effect on photosynthesis under stress by the combination of Fusarium commune and cinnamic acid. The control was not inoculated with F. commune, while the faba bean plants (Vicia faba L.) were inoculated with this pathogen in the other treatments. The infected plants were also treated with cinnamic acid. This study examined the development of Fusarium wilt together with its effects on the leaves, absorption of nutrients, chlorophyll fluorescence parameters, contents of photosynthetic pigments, activities of photosynthetic enzymes, gas exchange parameters, and the photosynthetic assimilates of faba bean from monocropping and intercropping systems. Under monocropping conditions, the leaves of the plants inoculated with F. commune grew significantly less, and there was enhanced occurrence of the Fusarium wilt compared with the control. Compared with the plants solely inoculated with F. commune, the exogenous addition of cinnamic acid to the infected plants significantly further reduced the growth of faba bean leaves and increased the occurrence of Fusarium wilt. A comparison of the combination of F. commune and cinnamic acid in intercropped wheat and faba bean compared with monocropping showed that intercropping improved the absorption of nutrients, increased photosynthetic pigments and its contents, electron transport, photosynthetic enzymes, and photosynthetic assimilates. The combination of these factors reduced the occurrence of Fusarium wilt in faba bean and increased the growth of its leaves. These results showed that intercropping improved the photosynthesis, which promoted the growth of faba bean, thus, reducing the development of Fusarium wilt following the stress of infection by F. commune and cinnamic acid. This research should provide more information to enhance sustainable agriculture.


Assuntos
Cinamatos , Fusarium , Fotossíntese , Doenças das Plantas , Vicia faba , Fusarium/fisiologia , Vicia faba/microbiologia , Vicia faba/fisiologia , Cinamatos/metabolismo , Cinamatos/farmacologia , Doenças das Plantas/microbiologia , Estresse Fisiológico , Folhas de Planta/microbiologia , Produção Agrícola/métodos , Clorofila/metabolismo , Produtos Agrícolas/microbiologia
14.
Sci Total Environ ; 947: 174585, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38986688

RESUMO

The focus on phytoremediation in soil cadmium (Cd) remediation is driven by its cost-effectiveness and eco-friendliness. Selecting suitable hyperaccumulators and optimizing their growth conditions are key to enhance the efficiency of heavy metal absorption and accumulation. Our research has concentrated on the role of salicylic acid (SA) and jasmonic acid (JA) in facilitating Cd phytoextraction by "Sedum alfredii (S. alfredii)" through improved soil-microbe interactions. Results showed that SA or JA significantly boosted the growth, stress resistance, and Cd extraction efficiency in S. alfredii. Moreover, these phytohormones enhanced the chemical and biochemical attributes of the rhizosphere soil, such as pH and enzyme activity, affecting soil-root interactions. High-throughput sequencing analysis has shown that Patescibacteria and Umbelopsis enhanced S. alfredii's growth and Cd extraction by modifying the bioavailability and the chemical conditions of Cd in soil. Structural Equation Model analysis further verified that phytohormones significantly enhanced the interaction between S. alfredii, soil, and microbes, leading to a marked increase in Cd accumulation in the plant. These discoveries emphasized the pivotal role of phytohormones in modulating the hyperaccumulators' response to environmental stress and offered significant scientific support for further enhancing the potential of hyperaccumulators in ecological restoration technologies using phytohormones.


Assuntos
Biodegradação Ambiental , Cádmio , Ciclopentanos , Oxilipinas , Rizosfera , Ácido Salicílico , Sedum , Microbiologia do Solo , Poluentes do Solo , Cádmio/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Poluentes do Solo/metabolismo , Sedum/metabolismo , Ciclopentanos/metabolismo , Microbiota , Reguladores de Crescimento de Plantas/metabolismo
15.
Small ; : e2400179, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031523

RESUMO

With the rapid development of micro/nano machining, there is an elevated demand for high-performance microdevices with high reliability and low cost. Due to their outstanding electrochemical, optical, electrical, and mechanical performance, carbon materials are extensively utilized in constructing microdevices for energy storage, sensing, and optoelectronics. Carbon micro/nano machining is fundamental in carbon-based intelligent microelectronics, multifunctional integrated microsystems, high-reliability portable/wearable consumer electronics, and portable medical diagnostic systems. Despite numerous reviews on carbon materials, a comprehensive overview is lacking that systematically encapsulates the development of high-performance microdevices based on carbon micro/nano structures, from structural design to manufacturing strategies and specific applications. This review focuses on the latest progress in carbon micro/nano machining toward miniaturized device, including structural engineering, large-scale fabrication, and performance optimization. Especially, the review targets an in-depth evaluation of carbon-based micro energy storage devices, microsensors, microactuators, miniaturized photoresponsive and electromagnetic interference shielding devices. Moreover, it highlights the challenges and opportunities in the large-scale manufacturing of carbon-based microdevices, aiming to spark further exciting research directions and application prospectives.

16.
Sci Data ; 11(1): 741, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972874

RESUMO

Our study presents the assembly of a high-quality Taihu goose genome at the Telomere-to-Telomere (T2T) level. By employing advanced sequencing technologies, including Pacific Biosciences HiFi reads, Oxford Nanopore long reads, Illumina short reads, and chromatin conformation capture (Hi-C), we achieved an exceptional assembly. The T2T assembly encompasses a total length of 1,197,991,206 bp, with contigs N50 reaching 33,928,929 bp and scaffold N50 attaining 81,007,908 bp. It consists of 73 scaffolds, including 38 autosomes and one pair of Z/W sex chromosomes. Importantly, 33 autosomes were assembled without any gap, resulting in a contiguous representation. Furthermore, gene annotation efforts identified 34,898 genes, including 436,162 RNA transcripts, encompassing 806,158 exons, 743,910 introns, 651,148 coding sequences (CDS), and 135,622 untranslated regions (UTR). The T2T-level chromosome-scale goose genome assembly provides a vital foundation for future genetic improvement and understanding the genetic mechanisms underlying important traits in geese.


Assuntos
Gansos , Genoma , Telômero , Animais , Gansos/genética , Telômero/genética , Anotação de Sequência Molecular
17.
Brain Behav ; 14(6): e3601, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898628

RESUMO

OBJECTIVE: To explore the functional connectivity (FC) characteristics of the episodic memory network (EMN) in amnestic mild cognitive impairment (aMCI) patients with different levels of executive function (EF). METHODS: This study included 76 participants from the Alzheimer's Disease Neuroimaging Initiative database, comprising 23 healthy controls (HCs) and 53 aMCI patients. Based on EF levels, aMCI patients were categorized into aMCI-highEF and aMCI-lowEF groups. Cognitive function scores, pathological markers (cerebrospinal fluid ß-amyloid, total tau protein, phosphorylated tau protein, AV45-PET, and FDG-PET), and functional magnetic resonance imaging were collected and compared among the three groups. Seed-based FC analysis was used to examine differences in the EMN among the groups, and partial correlation analysis was employed to investigate the relationship between changes in FC and cognitive function scores as well as pathological markers. RESULTS: Compared to the aMCI-highEF group, the aMCI-lowEF group exhibited more severe cognitive impairment, decreased cerebral glucose metabolism, and elevated AV45 levels. Significant FC differences in the left superior temporal gyrus (STG) of the EMN were observed among the three groups. Post hoc analysis revealed that the aMCI-lowEF group had increased FC in the left STG compared to the HCs and aMCI-highEF groups, with statistically significant differences. Correlation analysis showed a significant negative correlation between the differences in FC in the left STG of aMCI-highEF and aMCI-lowEF groups and Rey Auditory Verbal Learning Test forgetting scores. Receiver operator characteristic curve analysis indicated an area under the curve of 0.741 for distinguishing between aMCI-highEF and aMCI-lowEF groups based on FC of left STG, with a sensitivity of 0.808 and a specificity of 0.667. CONCLUSION: aMCI-lowEF exhibits characteristic changes in FC within the EMN, providing theoretical support for the role of EF in mediating EMN alterations and, consequently, impacting episodic memory function.


Assuntos
Amnésia , Disfunção Cognitiva , Função Executiva , Imageamento por Ressonância Magnética , Memória Episódica , Tomografia por Emissão de Pósitrons , Humanos , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Masculino , Feminino , Idoso , Função Executiva/fisiologia , Amnésia/fisiopatologia , Amnésia/diagnóstico por imagem , Pessoa de Meia-Idade , Testes Neuropsicológicos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem
18.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891803

RESUMO

Rabies virus (RABV) is a neurotropic virus that causes fatal neurological disease, raising serious public health issues and attracting extensive attention in society. To elucidate the molecular mechanism of RABV-induced neuronal damage, we used hematoxylin-eosin staining, transmission electron microscopy, transcriptomics analysis, and immune response factor testing to investigate RABV-infected neurons. We successfully isolated the neurons from murine brains. The specificity of the isolated neurons was identified by a monoclonal antibody, and the viability of the neurons was 83.53-95.0%. We confirmed that RABV infection induced serious damage to the neurons according to histochemistry and transmission electron microscope (TEM) scanning. In addition, the transcriptomics analysis suggested that multiple genes related to the pyroptosis pathway were significantly upregulated, including gasdermin D (Gsdmd), Nlrp3, caspase-1, and IL-1ß, as well as the chemokine genes Ccl2, Ccl3, Ccl4, Ccl5, Ccl7, Ccl12, and Cxcl10. We next verified this finding in the brains of mice infected with the rRC-HL, GX074, and challenge virus standard strain-24 (CVS-24) strains of RABV. Importantly, we found that the expression level of the Gsdmd protein was significantly upregulated in the neurons infected with different RABV strains and ranged from 691.1 to 5764.96 pg/mL, while the basal level of mock-infected neurons was less than 100 pg/mL. Taken together, our findings suggest that Gsdmd-induced pyroptosis is involved in the neuron damage caused by RABV infection.


Assuntos
Neurônios , Proteínas de Ligação a Fosfato , Piroptose , Vírus da Raiva , Raiva , Animais , Neurônios/virologia , Neurônios/metabolismo , Neurônios/patologia , Vírus da Raiva/patogenicidade , Vírus da Raiva/fisiologia , Raiva/virologia , Raiva/patologia , Raiva/metabolismo , Camundongos , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Encéfalo/virologia , Encéfalo/patologia , Encéfalo/metabolismo , Gasderminas
19.
Chemosphere ; 360: 142417, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797210

RESUMO

Silicon (Si) effectively promote the yield of many crops, mainly due to its ability to enhance plants resistance to stress. However, how Si helps hyperaccumulators to extract Cadmium (Cd) from soil has remained unclear. In this study, Sedum alfredii Hance (S. alfredii) was used as material to study how exogenous Si affected biomass, Cd accumulation, antioxidation, cell ultrastructure, subcellular distribution and changes in gene expression after Cd exposure. The study has shown that as Si concentration increases (1, 2 mM), the shoot biomass of plants increased by 33.1%-63.6%, the Cd accumulation increased by 31.9%-96.6%, and the chlorophyll, carotenoid content, photosynthetic gas exchange parameters significantly increased. Si reduced Pro and MDA, promoted the concentrations of SOD, CAT and POD to reduce antioxidant stress damage. In addition, Si promoted GSH and PC to chelate Cd in vacuoles, repaired damaged cell ultrastructure, improved the fixation of Cd and cell wall (especially in pectin), and reduced the toxic effects of Cd. Transcriptome analysis found that genes encoding Cd detoxification, Cd absorption and transport were up-regulated by Si supplying, including photosynthetic pathways (PSB, LHCB, PSA), antioxidant defense systems (CAT, APX, CSD, RBOH), cell wall biosynthesis such as pectinesterase (PME), chelation (GST, MT, NAS, GR), Cd absorption (Nramp3, Nramp5, ZNT) and Cd transport (HMA, PCR). Our result revealed the tentative mechanism of Si promotes Cd accumulation and enhances Cd tolerance in S. alfredii, and thereby provides a solid theoretical support for the practical use of Si fertilizer in phytoextraction.


Assuntos
Cádmio , Fotossíntese , Sedum , Silício , Poluentes do Solo , Sedum/efeitos dos fármacos , Sedum/metabolismo , Sedum/genética , Cádmio/toxicidade , Cádmio/metabolismo , Silício/farmacologia , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Transcriptoma/efeitos dos fármacos , Perfilação da Expressão Gênica , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Biomassa
20.
Environ Res ; 252(Pt 4): 119092, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729407

RESUMO

With the acceleration of industrialization, Cd pollution has emerged as a major threat to soil ecosystem health and food safety. Hyperaccumulating plants like Sedum alfredii Hance are considered to be used as part of an effective strategy for the ecological remediation of Cd polluted soils. This study delved deeply into the physiological, transcriptomic, and metabolomic responses of S. alfredii under cadmium (Cd) stress when treated with exogenous salicylic acid (SA). We found that SA notably enhanced the growth of S. alfredii and thereby increased absorption and accumulation of Cd, effectively alleviating the oxidative stress caused by Cd through upregulation of the antioxidant system. Transcriptomic and metabolomic data further unveiled the influence of SA on photosynthesis, antioxidant defensive mechanisms, and metal absorption enrichment pathways. Notably, the interactions between SA and other plant hormones, especially IAA and JA, played a central role in these processes. These findings offer us a comprehensive perspective on understanding how to enhance the growth and heavy metal absorption capabilities of hyperaccumulator plants by regulating plant hormones, providing invaluable strategies for future environmental remediation efforts.


Assuntos
Cádmio , Ácido Salicílico , Sedum , Poluentes do Solo , Transcriptoma , Cádmio/toxicidade , Ácido Salicílico/metabolismo , Sedum/efeitos dos fármacos , Sedum/metabolismo , Sedum/genética , Sedum/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Transcriptoma/efeitos dos fármacos , Metabolômica , Estresse Oxidativo/efeitos dos fármacos , Metaboloma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...