Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 554
Filtrar
2.
Ecotoxicol Environ Saf ; 281: 116681, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38964063

RESUMO

Fluoride exposure has been implicated as a potential risk factor for hypertension, but the underlying mechanisms remain unclear. This study investigated the role of the RhoA/ROCK signaling pathway in fluoride-induced hypertension. Male Wistar rats were divided into different groups and exposed to varying concentrations of sodium fluoride (NaF) or sodium chloride (NaCl) via drinking water. The rats' blood pressure was measured, and their aortic tissue was utilized for high-throughput sequencing analysis. Additionally, rat and A7r5 cell models were established using NaF and/or Fasudil. The study evaluated the effects of fluoride exposure on blood pressure, pathological changes in the aorta, as well as the protein/mRNA expression levels of phenotypic transformation indicators (a-SMA, calp, OPN) in vascular smooth muscle cells (VSMCs), along with the RhoA/ROCK signaling pathway (RhoA, ROCK1, ROCK2, MLC/p-MLC). The results demonstrated that fluoride exposure in rats led to increased blood pressure. High-throughput sequencing analysis revealed differential gene expression associated with vascular smooth muscle contraction, with the RhoA/ROCK signaling pathway emerging as a key regulator. Pathological changes in the rat aorta, such as elastic membrane rupture and collagen fiber deposition, were observed following NaF exposure. However, fasudil, a ROCK inhibitor, mitigated these pathological changes. Both in vitro and in vivo models confirmed the activation of the RhoA/ROCK signaling pathway and the phenotypic transformation of VSMCs from a contractile to a synthetic state upon fluoride exposure. Fasudil effectively inhibited the activities of ROCK1 and ROCK2 and attenuated the phenotypic transformation of VSMCs. In conclusion, fluoride has the potential to induce hypertension through the activation of the RhoA/ROCK signaling pathway and phenotypic changes in vascular smooth muscle cells. These results provide new insights into the mechanism of fluoride-induced hypertension.

3.
Bioresour Technol ; : 131074, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971393

RESUMO

The development of biodegradable antimicrobial bioplastics for food packaging holds great promise for solving the pollution and safety problems caused by petrochemical plastics and spoiled food. Herein, a natural active-bioplastic synthesized from citrus peel biomass is presented for perishable fruit preservation. These plastics are characterized by the nanoscale entanglement and recombinant hydrogen bonding between the endogenous pectin, polyphenols and cellulose micro/nanofibrils. They have attractive flexibility, tensile strength, gas barrier properties and antimicrobial activities, and can effectively extend the shelf life of perishable fruits such as banana and mango when used as food packaging. Cytotoxicity, degradability tests and life-cycle assessment show that these plastics had excellent nontoxicity and can be safely degraded or easily recycled. This work demonstrates a sustainable strategy for converting peel waste into eco-friendly bioplastics, providing a unique and novel insight into radically reducing the pollution and life-health threats posed by petrochemical plastics and spoiled food.

5.
Chemistry ; : e202401371, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825569

RESUMO

Herein, we describe a visible light-induced C(sp2)-H arylation method for quinoxalin-2(1H)-ones and coumarins using iodonium ylides without the need for external photocatalysts. The protocol demonstrates a broad substrate scope, enabling the arylation of diverse heterocycles through a simple and mild procedure. Furthermore, the photochemical reaction showcases its applicability in the efficient synthesis of biologically active molecules. Computational investigations at the CASPT2//CASSCF/PCM level of theory revealed that the excited state of quinoxalin-2(1H)-one facilitates electron transfer from its π bond to the antibonding orbital of the C-I bond in the iodonium ylide, ultimately leading to the formation of an aryl radical, which subsequently participates in the C-H arylation process. In addition, our calculations reveal that via single- electron transfer (SET) process, the C-I bond cleavage in iodonium ylide and new C-C bond formation between resultant aryl radical and cationic quinoxaline species take place in a concerned manner. This enables the arylation reaction to efficiently proceed along an energy-efficient route.

6.
Noise Health ; 26(121): 174-179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904819

RESUMO

OBJECTIVE: This study aimed to explore the effect of ward-noise-reduction management on the mental health and quality of life of patients with inflammatory bowel disease. METHODS: The medical records of 275 patients with inflammatory bowel disease admitted to the First Affiliated Hospital of Wenzhou Medical University from January 2020 to January 2023 were retrospectively analyzed. Routine care was performed for such hospitalized patients from January 2020 to July 2021. Thus, 124 patients were enrolled in the control group. From August 2021 to January 2023, our hospital implemented ward-noise-reduction management for such inpatients, and 151 patients were included in the observation group. The Athens Insomnia Scale (AIS), the State-Trait Anxiety Inventory, the Inflammatory Bowel Disease Questionnaire (IBDQ), and the noise level at the time of admission and discharge were compared. RESULTS: No significant difference in the State Anxiety Scale (S-AI), Trait Anxiety Scale (T-AI), and AIS and IBDQ scores at baseline existed between the two groups (P > 0.05). After nursing, the S-AI, T-AI, and AIS scores of the observation group were lower than those of the control group, and the IBDQ score of the observation group was higher than that of the control group (P < 0.05). The noise level of the observation group was lower than that of the control group during hospitalization in maximum sound level and average intermediate (P < 0.05). CONCLUSIONS: The application of ward-noise-reduction management in the nursing of patients with inflammatory bowel disease can improve their negative mood, improve their sleep quality, and quality of life, and reduce the ward noise level in maximum sound level and average intermediate, which has high clinical value.


Assuntos
Doenças Inflamatórias Intestinais , Ruído , Qualidade de Vida , Humanos , Feminino , Masculino , Doenças Inflamatórias Intestinais/psicologia , Doenças Inflamatórias Intestinais/terapia , Adulto , Estudos Retrospectivos , Pessoa de Meia-Idade , Ansiedade/prevenção & controle , Ansiedade/etiologia , Saúde Mental , Inquéritos e Questionários
7.
Gut Microbes ; 16(1): 2363020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841892

RESUMO

CD4+ T cells play a critical role in regulating autoimmune diseases, and intestinal microbial metabolites control various immune responses. Granzyme B (GzmB)-producing CD4+ T cells have been recently reported to participate in the pathogenesis of autoimmune diseases. Here, we found that GzmbB-deficient CD4+ T cells induced more severe colitis in Rag1-/- mice than wild-type (WT) CD4+ T cells. Germ-free (GF) mice exhibited a lower expression of GzmB in intestinal CD4+ T cells compared to specific pathogen-free (SPF) mice. Intestinal microbial metabolite butyrate increased GzmB expression in CD4+ T cells, especially in IL-10-producing Th1 cells, through HDAC inhibition and GPR43, but not GPR41 and GPR109a. Butyrate-treated GzmB-deficient CD4+ T cells demonstrated more severe colitis compared to butyrate-treated WT CD4+ T cells in the T cell transfer model. Butyrate altered intestinal microbiota composition, but altered microbiota did not mediate butyrate induction of intestinal CD4+ T cell expression of GzmB in mice. Blimp1 was involved in the butyrate induction of GzmB in IL-10-producing Th1 cells. Glucose metabolism, including glycolysis and pyruvate oxidation, mediated butyrate induction of GzmB in Th1 cells. In addition, we found that IKZF3 and NR2F6 regulated GzmB expression induced by butyrate. Together, our studies underscored the critical role of GzmB in mediating gut bacterial metabolite butyrate regulation of T cell tolerance at the mucosal surface.


Assuntos
Butiratos , Colite , Microbioma Gastrointestinal , Granzimas , Interleucina-10 , Camundongos Endogâmicos C57BL , Células Th1 , Animais , Interleucina-10/metabolismo , Interleucina-10/genética , Interleucina-10/imunologia , Células Th1/imunologia , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Butiratos/metabolismo , Butiratos/farmacologia , Granzimas/metabolismo , Colite/imunologia , Colite/microbiologia , Colite/metabolismo , Camundongos Knockout , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Tolerância Imunológica , Proteínas de Homeodomínio
8.
Int J Biol Macromol ; 272(Pt 1): 132893, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838883

RESUMO

Foodborne pathogens result in a great harm to human, which is an urgent problem to be addressed. Herein, a novel cellulose-based packaging films with excellent anti-bacterial properties under visible light were prepared. A porphyrin-based covalent organic polymer (Por-COPs) was constructed, then covalently grafted onto dialdehyde cellulose (DAC). The addition of Por-COPs enhanced the mechanical, hydrophobicity, and water resistance of the DAC-based composite films. DAC/Por-COP-2.5 film exhibited outstanding properties for the photodynamic inactivation of bacteria under visible light irradiation, delivering inactivation efficiencies of 99.90 % and 99.45 % towards Staphylococcus aureus and Escherichia coli within 20 min. The DAC/Por-COPs films efficiently generated •O2- and 1O2 under visible light, thereby causing oxidative stress to cell membranes for bacterial inactivation. The prepared composite film forms a protective barrier against bacterial contamination. Results guide the development of high performance and more sustainable packaging films for the food sector.


Assuntos
Celulose , Escherichia coli , Porfirinas , Staphylococcus aureus , Celulose/química , Celulose/análogos & derivados , Celulose/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Luz , Embalagem de Alimentos/métodos , Polímeros/química , Polímeros/farmacologia , Esterilização/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
10.
Molecules ; 29(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930975

RESUMO

As a toxic Volatile Organic Pollutant (TVOC), formaldehyde has a toxic effect on microorganisms, consequently inhibiting the biochemical process of formaldehyde wastewater treatment. Therefore, the selective degradation of formaldehyde is of great significance in achieving high-efficiency and low-cost formaldehyde wastewater treatment. This study constructed a heterogeneous Fe-ZSM-5/H2O2 Fenton system f or the selective degradation of target compounds. By immobilizing Fe3+ onto the surface of a ZSM-5 molecular sieve, Fe-ZSM-5 was prepared successfully. XRD, BET and FT-IR spectral studies showed that Fe-ZSM-5 was mainly composed of micropores. The influences of different variables on formaldehyde-selective heterogeneous Fenton degradation performance were studied. The 93.7% formaldehyde degradation and 98.2% selectivity of formaldehyde compared with glucose were demonstrated in the optimized Fenton system after 360 min. Notably, the resultant selective Fenton oxidation system had a wide range of pH suitability, from 3.0 to 10.0. Also, the Fe-ZSM-5 was used in five consecutive cycles without a significant drop in formaldehyde degradation efficiency. The use of reactive oxygen species scavengers indicated that the hydroxyl radical was the primary active species responsible for degrading formaldehyde. Furthermore, great degradation performance was acquired with high concentrations of formaldehyde for this system, and the degradation efficiency was more than 95.0%.

11.
Ann Surg Oncol ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879674

RESUMO

BACKGROUND: Distant metastatic parathyroid carcinoma (DM-PC) is a rare but often lethal entity with limited data about prognostic indicators. We sought to investigate the risk factors, patterns, and outcomes of DM-PC. METHODS: In this observational cohort study, 126 patients who underwent surgery for PC at a tertiary referral center from 2010 to 2023 were enrolled, among whom 38 had DMs. Univariate and multivariate Cox regression analyses were used to assess the effects of prognostic factors on DM. RESULTS: The cumulative incidence of DM was 14.1%, 33.8%, and 66.9% at 5, 10, and 20 years in the duration of disease course, respectively. DM-PC patients suffered a worse 5-year overall survival of 37.1% compared with 89.8% in the non-DM patients (p < 0.001). DM-PC patients also suffered more previous operations (p < 0.001), higher preoperative serum calcium (p<0.001) and parathyroid hormone (PTH) levels (p < 0.001), lower frequencies of R0 resection (p < 0.001), higher rates of pathological vascular invasion (p = 0.020), thyroid infiltration (p = 0.027), extraglandular extension (p = 0.001), upper aerodigestive tract (UAT) invasion (p < 0.001), and lymph node metastasis (p < 0.001). Multivariate Cox regression revealed that non-R0 resection (HR 6.144, 95% CI 2.881-13.106, p < 0.001), UAT invasion (HR 3.718, 95% CI 1.782-7.756, p < 0.001), and higher preoperative PTH levels (HR 1.001, 95% CI 1.000-1.001, p = 0.012) were independent risk factors of DM. CONCLUSIONS: Upper aerodigestive tract invasion and higher preoperative PTH levels might be risk factors for possible metastatic involvement of PC. R0 resection and closer surveillance should be considered in such cases to minimize the risk of DM and to optimize patient care.

12.
Radiol Cardiothorac Imaging ; 6(3): e230281, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38695743

RESUMO

Purpose To describe the clinical presentation, comprehensive cardiac MRI characteristics, and prognosis of individuals with predisposed heart failure with preserved ejection fraction (HFpEF). Materials and Methods This prospective cohort study (part of MISSION-HFpEF [Multimodality Imaging in the Screening, Diagnosis, and Risk Stratification of HFpEF]; NCT04603404) was conducted from January 1, 2019, to September 30, 2021, and included individuals with suspected HFpEF who underwent cardiac MRI. Participants who had primary cardiomyopathy and primary valvular heart disease were excluded. Participants were split into a predisposed HFpEF group, defined as HFpEF with normal natriuretic peptide levels based on an HFA-PEFF (Heart Failure Association Pretest Assessment, Echocardiography and Natriuretic Peptide, Functional Testing, and Final Etiology) score of 4 from the latest European Society of Cardiology guidelines, and an HFpEF group (HFA-PEFF score of ≥ 5). An asymptomatic control group without heart failure was also included. Clinical and cardiac MRI-based characteristics and outcomes were compared between groups. The primary end points were death, heart failure hospitalization, or stroke. Results A total of 213 participants with HFpEF, 151 participants with predisposed HFpEF, and 100 participants in the control group were analyzed. Compared with the control group, participants with predisposed HFpEF had worse left ventricular remodeling and function and higher systemic inflammation. Compared with participants with HFpEF, those with predisposed HFpEF, whether obese or not, were younger and had higher plasma volume, lower prevalence of atrial fibrillation, lower left atrial volume index, and less impaired left ventricular global longitudinal strain (-12.2% ± 2.8 vs -13.9% ± 3.1; P < .001) and early-diastolic global longitudinal strain rate (eGLSR, 0.52/sec ± 0.20 vs 0.57/sec ± 0.15; P = .03) but similar prognosis. Atrial fibrillation occurrence (hazard ratio [HR] = 3.90; P = .009), hemoglobin level (HR = 0.94; P = .001), and eGLSR (per 0.2-per-second increase, HR = 0.28; P = .002) were independently associated with occurrence of primary end points in participants with predisposed HFpEF. Conclusion Participants with predisposed HFpEF showed relatively unique clinical and cardiac MRI features, warranting greater clinical attention. eGLSR should be considered as a prognostic factor in participants with predisposed HFpEF. Keywords: Heart Failure with Preserved Ejection Fraction, Normal Natriuretic Peptide Levels, Cardiovascular Magnetic Resonance, Myocardial Strain, Prognosis Clinical trial registration no. NCT04603404 Supplemental material is available for this article. © RSNA, 2024.


Assuntos
Insuficiência Cardíaca , Peptídeos Natriuréticos , Volume Sistólico , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/sangue , Imageamento por Ressonância Magnética , Imagem Cinética por Ressonância Magnética/métodos , Peptídeos Natriuréticos/sangue , Prognóstico , Estudos Prospectivos , Volume Sistólico/fisiologia
13.
Hepatology ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779918

RESUMO

BACKGROUND AND AIMS: Circulating tumor cells (CTCs) are precursors of cancer metastasis. However, how CTCs evade immunosurveillance during hematogenous dissemination remains unclear. APPROACH AND RESULTS: We identified CTC-platelet adhesions by single-cell RNA sequencing and multiplex immunofluorescence of blood samples from multiple cancer types. Clinically, CTC-platelet aggregates were associated with significantly shorter progression-free survival and overall survival in patients with HCC. In vitro, ex vivo, and in vivo assays demonstrated direct platelet adhesions gifted cancer cells with an evasive ability from NK cell killing by upregulating inhibitory checkpoint CD155 (PVR cell adhesion molecule), therefore facilitating distant metastasis. Mechanistically, CD155 was transcriptionally regulated by the FAK/JNK/c-Jun cascade in a platelet contact-dependent manner. Further competition assays and cytotoxicity experiments revealed that CD155 on CTCs inhibited NK-cell cytotoxicity only by engaging with immune receptor TIGIT, but not CD96 and DNAM1, another 2 receptors for CD155. Interrupting the CD155-TIGIT interactions with a TIGIT antibody restored NK-cell immunosurveillance on CTCs and markedly attenuated tumor metastasis. CONCLUSIONS: Our results demonstrated CTC evasion from NK-cell-mediated innate immunosurveillance mainly through immune checkpoint CD155-TIGIT, potentially offering an immunotherapeutic strategy for eradicating CTCs.

14.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791354

RESUMO

Aliphatic glucosinolates are an abundant group of plant secondary metabolites in Brassica vegetables, with some of their degradation products demonstrating significant anti-cancer effects. The transcription factors MYB28 and MYB29 play key roles in the transcriptional regulation of aliphatic glucosinolates biosynthesis, but little is known about whether BoMYB28 and BoMYB29 are also modulated by upstream regulators or how, nor their gene regulatory networks. In this study, we first explored the hierarchical transcriptional regulatory networks of MYB28 and MYB29 in a model plant, then systemically screened the regulators of the three BoMYB28 homologs in cabbage using a yeast one-hybrid. Furthermore, we selected a novel RNA binding protein, BoRHON1, to functionally validate its roles in modulating aliphatic glucosinolates biosynthesis. Importantly, BoRHON1 induced the accumulation of all detectable aliphatic and indolic glucosinolates, and the net photosynthetic rates of BoRHON1 overexpression lines were significantly increased. Interestingly, the growth and biomass of these overexpression lines of BoRHON1 remained the same as those of the control plants. BoRHON1 was shown to be a novel, potent, positive regulator of glucosinolates biosynthesis, as well as a novel regulator of normal plant growth and development, while significantly increasing plants' defense costs.


Assuntos
Brassica , Regulação da Expressão Gênica de Plantas , Glucosinolatos , Proteínas de Plantas , Proteínas de Ligação a RNA , Fatores de Transcrição , Glucosinolatos/metabolismo , Brassica/metabolismo , Brassica/genética , Brassica/crescimento & desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Redes Reguladoras de Genes , Plantas Geneticamente Modificadas
15.
J Org Chem ; 89(11): 7591-7597, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723145

RESUMO

In this study, we present an efficient approach for the synthesis of 3-sulfenyl indoles through an electron donor-acceptor (EDA) complex-promoted photoreaction. This sulfenylation reaction leverages sulfonyl chlorides as the sulfur source and employs PPh3 as the reductant without the need for any transition-metal catalyst or photocatalyst. At the same time, the relaxation process of the excited EDA complex was theoretically investigated at the method and multiconfiguration second-order perturbation//complete active space self-consistent field/PCM level of theory, which involves the π bond of indoles injecting an electron to the antibonding orbital of the S-Cl bond in arylsulfonyl chlorides.

16.
Innovation (Camb) ; 5(3): 100603, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38745762

RESUMO

The vaccine-induced innate immune response is essential for the generation of an antibody response. To date, how Ad5-vectored vaccines are influenced by preexisting anti-Ad5 antibodies during activation of the early immune response remains unclear. Here, we investigated the specific alterations in GP1,2-specific IgG-related elements of the early immune response at the genetic, molecular, and cellular levels on days 0, 1, 3, and 7 after Ad5-EBOV vaccination. In a causal multiomics analysis, distinct early immune responses associated with GP1,2-specific IgG were observed in Ad5-EBOV recipients with a low level of preexisting anti-Ad5 antibodies. This study revealed the correlates of the Ad5-EBOV-induced IgG response and provided mechanistic evidence for overcoming preexisting Ad5 immunity during the administration of Ad5-vectored vaccines.

17.
Hortic Res ; 11(5): uhae068, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38725456

RESUMO

Salinity stress causes serious damage to crops worldwide, limiting plant production. However, the metabolic and molecular mechanisms underlying the response to salt stress in rose (Rosa spp.) remain poorly studied. We therefore performed a multi-omics investigation of Rosa hybrida cv. Jardin de Granville (JDG) and Rosa damascena Mill. (DMS) under salt stress to determine the mechanisms underlying rose adaptability to salinity stress. Salt treatment of both JDG and DMS led to the buildup of reactive oxygen species (H2O2). Palisade tissue was more severely damaged in DMS than in JDG, while the relative electrolyte permeability was lower and the soluble protein content was higher in JDG than in DMS. Metabolome profiling revealed significant alterations in phenolic acid, lipids, and flavonoid metabolite levels in JDG and DMS under salt stress. Proteome analysis identified enrichment of flavone and flavonol pathways in JDG under salt stress. RNA sequencing showed that salt stress influenced primary metabolism in DMS, whereas it substantially affected secondary metabolism in JDG. Integrating these datasets revealed that the phenylpropane pathway, especially the flavonoid pathway, is strongly enhanced in rose under salt stress. Consistent with this, weighted gene coexpression network analysis (WGCNA) identified the key regulatory gene chalcone synthase 1 (CHS1), which is important in the phenylpropane pathway. Moreover, luciferase assays indicated that the bHLH74 transcription factor binds to the CHS1 promoter to block its transcription. These results clarify the role of the phenylpropane pathway, especially flavonoid and flavonol metabolism, in the response to salt stress in rose.

18.
Endocrine ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730070

RESUMO

INTRODUCTION: The differential diagnosis of parathyroid carcinoma (PC)/parathyroid adenoma (PA) in parathyroid tumors is critical for their management and prognosis. Circulating tumor cells (CTCs) identification in the peripheral blood of parathyroid tumors remains unknown. In this study, we proposed to investigate the differences of CTCs in PC/PA and the relationship with clinicopathologic features to assess its relevance to PC and value in identifying PC/PA. METHODS AND MATERIALS: Peripheral blood was collected from 27 patients with PC and 37 patients with PA treated in our hospital, and the number of chromosome 8 aberrant CTCs was detected by negative magnetic bead sorting fluorescence in situ hybridization (NE-FISH). The differences of CTCs in PC/PA peripheral blood were compared and their diagnostic efficacy was evaluated, and the correlation between CTCs and clinicopathological features of PC was further explored. RESULTS: CTCs differed significantly in PC/PA (p = 0.0008) and were up-regulated in PC, with good diagnostic efficacy. CTCs combined with alkaline phosphatase (ALP) assay improved the diagnostic efficacy in identifying PC/PA (AUC = 0.7838, p = 0.0001). The number of CTCs was correlated with tumor dimensions, but not significantly correlated with clinical markers such as calcium and PTH and pathological features such as vascular invasion, lymph node metastasis and distant metastasis. CONCLUSION: As a non-invasive liquid biopsy method, CTCs test combined with ALP test can be used as an important reference basis for timely and accurate identification and treatment of PC. It is of great significance to improve the current situation of PC diagnosis, treatment and prognosis.

19.
Cell Rep ; 43(5): 114237, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753484

RESUMO

Cardiac dysfunction, an early complication of endotoxemia, is the major cause of death in intensive care units. No specific therapy is available at present for this cardiac dysfunction. Here, we show that the N-terminal gasdermin D (GSDMD-N) initiates mitochondrial apoptotic pore and cardiac dysfunction by directly interacting with cardiolipin oxidized by complex II-generated reactive oxygen species (ROS) during endotoxemia. Caspase-4/11 initiates GSDMD-N pores that are subsequently amplified by the upregulation and activation of NLRP3 inflammation through further generation of ROS. GSDMD-N pores form prior to BAX and VDAC1 apoptotic pores and further incorporate into BAX and VDAC1 oligomers within mitochondria membranes to exacerbate the apoptotic process. Our findings identify oxidized cardiolipin as the definitive target of GSDMD-N in mitochondria of cardiomyocytes during endotoxin-induced myocardial dysfunction (EIMD), and modulation of cardiolipin oxidation could be a therapeutic target early in the disease process to prevent EIMD.


Assuntos
Cardiolipinas , Endotoxemia , Peptídeos e Proteínas de Sinalização Intracelular , Miócitos Cardíacos , Oxirredução , Proteínas de Ligação a Fosfato , Espécies Reativas de Oxigênio , Cardiolipinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Endotoxemia/metabolismo , Endotoxemia/patologia , Proteínas de Ligação a Fosfato/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Masculino , Apoptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mitocôndrias/metabolismo , Gasderminas
20.
Plant Cell Environ ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747469

RESUMO

Drought, as a primary environmental factor, imposes significant constraints on developmental processes and productivity of plants. PHDs were identified as stress-responsive genes in a wide range of eukaryotes. However, the regulatory mechanisms governing PHD genes in maize under abiotic stress conditions are still largely unknown and require further investigation. Here, we identified a mutant, zmvil2, in the EMS mutant library with a C to T mutation in the exon of the Zm00001d053875 (VIN3-like protein 2, ZmVIL2), resulting in premature termination of protein coding. ZmVIL2 belongs to PHD protein family. Compared to WT, zmvil2 mutant exhibited increased sensitivity to drought stress. Consistently, overexpression of ZmVIL2 enhances drought resistance in maize. Y2H, BiFC, and Co-IP experiments revealed that ZmVIL2 directly interacts with ZmFIP37 (FKBP12-interacting protein of 37). zmfip37 knockout mutants also exhibit decreased drought tolerance. Interestingly, we demonstrated that ZmABF4 directly binds to the ZmVIL2 promoter to enhance its activity in yeast one hybrid (Y1H), electrophoretic mobility shift assay (EMSA) and dual luciferase reporter assays. Therefore, we uncovered a novel model ZmABF4-ZmVIL2/ZmFIP37 that promotes drought tolerance in maize. Overall, these findings have enriched the knowledge of the functions of PHD genes in maize and provides genetic resources for breeding stress-tolerant maize varieties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...