RESUMO
Lungs can undergo facultative regeneration, but handicapped regeneration often leads to fibrosis. How microenvironmental cues coordinate lung regeneration via modulating cell death remains unknown. Here, we reveal that the neurotransmitter dopamine modifies the endothelial niche to suppress ferroptosis, promoting lung regeneration over fibrosis. A chemoproteomic approach shows that dopamine blocks ferroptosis in endothelial cells (ECs) via dopaminylating triosephosphate isomerase 1 (TPI1). Suppressing TPI1 dopaminylation in ECs triggers ferroptotic angiocrine signaling to aberrantly activate fibroblasts, leading to a transition from lung regeneration to fibrosis. Mechanistically, dopaminylation of glutamine (Q) 65 residue in TPI1 directionally enhances TPI1's activity to convert dihydroxyacetone phosphate (DHAP) to glyceraldehyde 3-phosphate (GAP), directing ether phospholipid synthesis to glucose metabolism in regenerating lung ECs. This metabolic shift attenuates lipid peroxidation and blocks ferroptosis. Restoring TPI1 Q65 dopaminylation in an injured endothelial niche overturns ferroptosis to normalize pro-regenerative angiocrine function and alleviate lung fibrosis. Overall, dopaminylation of TPI1 balances lipid/glucose metabolism and suppresses pro-fibrotic ferroptosis in regenerating lungs.
Assuntos
Células Endoteliais , Ferroptose , Pulmão , Animais , Camundongos , Pulmão/metabolismo , Pulmão/patologia , Humanos , Células Endoteliais/metabolismo , Regeneração , Triose-Fosfato Isomerase/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , MasculinoRESUMO
OBJECTIVES: This study aimed at exploring how using different kinds of sheaths will affect the very first ablation procedure of apprentices. METHODS: 15 patients with paroxysmal atrial fibrillation were randomized to used fixed-curve, conventional steerable or visualized steerable sheath, and received complete isolation of pulmonary veins. All ablations were the very first procedure performed by 15 ablation apprentices. The use of fluoroscopy and catheter stability during the PVI were analyzed. RESULTS: Procedure duration was much longer in the fixed-curve group (116.8 ± 27 vs. 62.2 ± 17 vs. 60.4 ± 17, p < 0.001). X-ray exposure was lowest with visualized sheath (17.6 ± 5 vs. 18.6 ± 6 vs. 5.2 ± 6, p < 0.001). CF SD differed significantly, especially at the anterior aspect of LSPV (7.90 ± 2.90 vs. 5.04 ± 2.18 vs. 4.52 ± 2.40, p < 0.001) and posterior aspect of RSPV (6.84 ± 2.79 vs. 3.42 ± 2.04 vs. 3.50 ± 2.30, p < 0.001) in the fixed-curve group. Impedance drop was significantly smaller in the fixed-curve group at the anterior aspect of LSPV (8.74 ± 3.02 vs. 11.49 ± 5.48 vs. 12.57 ± 5.96, p = 0.005). CONCLUSION: Even for the very first ablation procedure of an ablation apprentice, the use of steerable sheaths will significantly reduce the procedure duration and improve the catheter stability, but only visualized steerable sheath can reduce fluoroscopic time.
Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Humanos , Fibrilação Atrial/cirurgia , Veias Pulmonares/cirurgia , Ablação por Cateter/métodos , Ablação por Cateter/instrumentação , Masculino , Feminino , Pessoa de Meia-Idade , Fluoroscopia , Resultado do Tratamento , AdultoRESUMO
BACKGROUND: The association between bone fracture and cardiovascular diseases is examined in this study. While basic research has established a connection between fractures and heart attacks through the linkage between bones and arteries, population studies have not provided clear evidence. The aim of the present study is to investigate the association between bone fracture and the occurrence of myocardial infarction in a natural population during long-term follow-up. METHODS: A total of 13,196 adult participants with bone fracture history at baseline from the China Health and Nutrition Survey (CHNS) prospective cohort were included in this study. Baseline investigation was performed in 1997-2009 and the outcome was followed up till 2015. Hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) were calculated using Cox proportional hazards models. RESULTS: From 1997 to 2015, a total of 329 incident myocardial infarction cases were identified. In univariate and multivariate Cox regression analysis, a history of bone fracture was associated with an increased risk of myocardial infarction incidence in the total population (for the crude model: HR = 2.56, 95% CI 1.83-3.53, P < 0.001; for the multivariate model: HR = 1.43, 95% CI 1.02-1.99, P = 0.036). In the stratified analysis, bone fracture was not associated with an increased risk of incident myocardial infarction in subjects with age < 50 years (HR = 0.71, 95% CI 0.34-1.47, P = 0.356), but significantly associated with an increased risk of incident myocardial infarction in subjects with age ≥ 50 years (HR = 1.80, 95% CI 1.23-2.63, P = 0.003). CONCLUSIONS: It is suggested by the present study that bone fracture may be associated with an increased risk of incident myocardial infarction in the elderly population during long-term follow-up.
Assuntos
Fraturas Ósseas , Infarto do Miocárdio , Humanos , Infarto do Miocárdio/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , China/epidemiologia , Fraturas Ósseas/epidemiologia , Incidência , Seguimentos , Adulto , Estudos Prospectivos , Idoso , Fatores de Risco , Modelos de Riscos Proporcionais , Inquéritos NutricionaisRESUMO
BACKGROUND: Atrial fibrillation (AF) is associated with circulating inflammation. Short-chain fatty acids (SCFAs) derived from gut microbiota (GM) regulate leukocyte function and inhibit the release of inflammatory cytokines, which are partly mediated by the G-protein-coupled receptor 43 (GPR43) signaling. This study aimed to investigate the expression of GPR43/NOD-like receptors family pyrin domain containing 3 (NLRP3) in leukocytes and the interaction with intestinal SCFAs levels in AF patients. METHODS: Expressions of GPR43 and NLRP3 mRNA in peripheral blood leukocytes from 23 AF patients and 25 non-AF controls were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Expressions of leukocyte GPR43 and NLRP3 protein were evaluated by western blot analysis. The levels of plasma IL-1ß were measured by enzyme-linked immunosorbent assay (ELISA). The fecal SCFAs levels based on GC/MS metabolome of corresponding 21 controls and 14 AF patients were acquired from our published dataset. To evaluate the expression of NLRP3 and GPR43 and the release of IL-1ß, human THP-1 cells were stimulated with or without SCFAs (acetate, propionate, and butyrate), lipopolysaccharide (LPS), and nigericin in vitro, respectively. RESULTS: Compared to the controls, the mRNA expression in peripheral leukocytes was significantly reduced in AF patients (P = 0.011) coupled with the increase in downstream leukocyte NLRP3 mRNA expression (P = 0.007) and plasma IL-1ß levels (P < 0.001), consistent with changes in GPR43 and NLRP3 protein expression. Furthermore, leukocyte GPR43 mRNA levels were positively correlated with fecal GM-derived acetic acid (P = 0.046) and negatively correlated with NLRP3 mRNA expression (P = 0.024). In contrast to the negative correlation between left atrial diameter (LAD) and GPR43 (P = 0.008), LAD was positively correlated with the leukocyte NLRP3 mRNA levels (P = 0.024). Subsequent mediation analysis showed that 68.88% of the total effect of intestinal acetic acid on AF might be mediated by leukocyte GPR43/NLRP3. The constructed GPR43-NLRP3 score might have a predictive potential for AF detection (AUC = 0.81, P < 0.001). Moreover, SCFAs treatment increased GPR43 expression and remarkably reduced LPS/nigericin-induced NLRP3 expression and IL-1ß release in human THP-1 cells in vitro. CONCLUSIONS: Disrupted interactions between GPR43 and NLRP3 expression in peripheral blood leukocytes, associated with reduced intestinal GM-derived SCFAs, especially acetic acid, may be involved in AF development and left atrial enlargement by enhancing circulating inflammation.
Assuntos
Fibrilação Atrial , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Acetatos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Inflamação/metabolismo , Leucócitos/metabolismo , Lipopolissacarídeos/farmacologia , Nigericina/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
The association between high blood pressure and fracture showed obvious discrepancies and were mostly between hypertension with future fracture, but rarely between fracture and incident hypertension. The present study aims to investigate the associations of hypertension with future fracture, and fracture with incident hypertension. We included adult participants from the China Health and Nutrition Survey (CHNS) prospective cohort in 1997-2015 (N = 10,227), 2000-2015 (N = 10,547), 2004-2015 (N = 10,909), and 2006-2015 (N = 11,121) (baseline in 1997, 2000, 2004, 2006 respectively and outcome in 2015). Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% CIs. In the analysis of the association between hypertension and future fracture, the adjusted HRs (95% CIs) were 1.34 (0.95-1.90) in 1997-2015, 1.40 (1.04-1.88) in 2000-2015, 1.32 (0.98-1.78) in 2004-2015, and 1.38 (1.01-1.88) in 2006-2015. In the analysis of the association between fracture and incident hypertension, the adjusted HRs (95% CIs) were 1.28 (0.96-1.72) in 1997-2015, 1.18 (0.94-1.49) in 2000-2015, 1.12 (0.89-1.40) in 2004-2015, and 1.09 (0.85-1.38) in 2006-2015. The present study showed that hypertension history was associated with increased risk of future fracture, but not vice versa.
Assuntos
Fraturas Ósseas , Hipertensão , Adulto , Humanos , Estudos Prospectivos , Fatores de Risco , Inquéritos Epidemiológicos , Pressão Sanguínea , Modelos de Riscos ProporcionaisRESUMO
BACKGROUND: The diagnostic potential of circular RNAs (circRNAs) in circulating exosomes for acute myocardial infarction (AMI) is not well understood, despite existing research indicating their role in cardiovascular diseases. This study aimed to clarify the significance of exosomal circular RNAs as indicators for AMI. METHODS: We examined 120 individuals diagnosed with AMI and 83 individuals with non-cardiogenic chest pain (NCCP), all previously enrolled in a conducted study. High-throughput sequencing to identify differentially expressed circRNAs in the circulating exosomes of AMI patients. To validate, we employed Real-Time polymerase chain reaction (RT-PCR) targeting five circRNAs that exhibited notable increase. RESULTS: The sequencing identified 893 exosomal circRNAs with altered expression in AMI patients, including 118 up-regulated and 775 down-regulated circRNAs. Genes linked to these circRNAs were enriched in crucial Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, highlighting their direct relevance to AMI pathophysiology. Three exosomal circRNAs (hsa_circ_0001558, hsa_circ_0001535, and hsa_circ_0000972) showed significant up-regulation in AMI patients during the initial validation cohort. The corresponding area under the curve (AUC) values were 0.79, 0.685, and 0.683, respectively. Further validation of hsa_circ_0001558 in a second cohort showed a 4.45-fold increase in AMI patients, with AUC = 0.793. The rise was particularly noticeable in patients with non-ST-elevation myocardial infarction (NSTEMI) (2.80 times, AUC = 0.72) and patients with ST-elevation myocardial infarction (STEMI) (5.27 times, AUC = 0.831) compared to patients with NCCP. CONCLUSIONS: Our findings demonstrate significant differences in the expression patterns of circRNAs in plasma exosomes between AMI patients and NCCP patients. Specifically, hsa_circ_0001558 appears as a promising indicator for AMI diagnosis. Further research is necessary to fully evaluate the diagnostic potential of exosomal circRNAs in the context of AMI, emphasizing the importance of these findings.
Assuntos
Biomarcadores , Exossomos , Infarto do Miocárdio , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/sangue , Exossomos/genética , Exossomos/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/sangue , Infarto do Miocárdio/diagnóstico , Biomarcadores/sangue , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase em Tempo Real , Estudos de Casos e ControlesRESUMO
AIMS: The molecular signatures in epicardial adipose tissue (EAT) that contribute to the pathogenesis of heart failure with preserved ejection fraction (HFpEF) are poorly characterized. In this study, we sought to elucidate molecular signatures including genetic transcripts and long non-coding RNAs (lncRNAs) in EAT that might modulate HFpEF development. METHODS: RNA sequencing (RNA-seq) was performed to identify differentially expressed lncRNAs and mRNAs in EAT samples from patients with HFpEF (n = 5) and without HF (control, n = 5) who underwent coronary artery bypass grafting. The sequencing results were validated using quantitative real-time PCR (qRT-PCR). Bioinformatics analysis (Gene Ontology and Kyoto Encyclopedia of Genes and Genomes) of differentially expressed RNAs was performed to predict enriched functions. RESULTS: HFpEF patients had higher EAT thickness and NT-proBNP levels than the control group. A total of 64 471 transcripts were detected including 35 395 protein-coding sequences, corresponding to 16 854 genes in EAT. RNA-seq identified a total of 741 dysregulated mRNA transcripts (394 up-regulated and 347 down-regulated) and 334 differentially expressed lncRNA transcripts (222 up-regulated and 112 down-regulated) in the HFpEF group compared with the control group (P < 0.05). qRT-PCR analysis confirmed that two lncRNAs ENST00000561775 (P = 0.0194) and ENST00000519093 (P = 0.027) and an mRNA POSTN (P = 0.003) were differentially expressed. Functional enrichment analysis of the differentially expressed mRNAs suggested their potential roles in immune response involving cytokine interaction and chemokine signalling. CONCLUSIONS: We are the first group to report on the lncRNA and mRNA landscape in EAT in HFpEF patients. Our study suggests the possible role of lncRNAs in EAT.
Assuntos
Tecido Adiposo , Insuficiência Cardíaca , Pericárdio , Volume Sistólico , Humanos , Pericárdio/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Volume Sistólico/fisiologia , Tecido Adiposo/metabolismo , Masculino , Feminino , Idoso , RNA Longo não Codificante/genética , Pessoa de Meia-Idade , RNA Mensageiro/genética , Perfilação da Expressão Gênica/métodos , Tecido Adiposo EpicárdicoRESUMO
Organoids are in vitro 3D models that are generated using stem cells to study organ development and regeneration. Despite the extensive research on lung organoids, there is limited information on pig lung cell generation or development. Here, we identified five epithelial cell types along with their characteristic markers using scRNA-seq. Additionally, we found that NKX2.1 and FOXA2 acted as the crucial core transcription factors in porcine lung development. The presence of SOX9/SOX2 double-positive cells was identified as a key marker for lung progenitor cells. The Monocle algorithm was used to create a pseudo-temporal differentiation trajectory of epithelial cells, leading to the identification of signaling pathways related to porcine lung development. Moreover, we established the differentiation method from porcine pluripotent stem cells (pPSCs) to SOX17+ FOXA2+ definitive endoderm (DE) and NKX2.1+ FOXA2+ CDX2- anterior foregut endoderm (AFE). The AFE is further differentiated into lung organoids while closely monitoring the differentiation process. We showed that NKX2.1 overexpression facilitated the induction of lung organoids and supported subsequent lung differentiation and maturation. This model offers valuable insights into studying the interaction patterns between cells and the signaling pathways during the development of the porcine lung.
Assuntos
Células-Tronco Pluripotentes , Animais , Suínos , Pulmão/metabolismo , Organoides/metabolismo , Diferenciação Celular , Células Epiteliais/metabolismoRESUMO
Metal atoms on the support serve as active sites for many heterogeneous catalysts. However, the active metal sites on the support are conventionally described as static, and the intermediates adsorbed on the support far away from the active metal sites cannot be transformed. Herein, we report the first example of operando mobile catalysis to promote catalytic efficiency by enhancing the collision probability between active sites and reactants or reaction intermediates. Specifically, ligand-coordinated Pt single atoms (isolated MeCpPt- species) are bonded on CeO2 and transformed into mobile MeCpPt(H)CO complexes during the reverse water gas shift reaction for operando mobile catalysis. This strategy enables the conversion of inert carbonate intermediates on the CeO2 support. A turnover frequency (TOF) of 6358â molâ CO2 molPt -1 â h-1 and 99 % CO selectivity at 300 °C is obtained for reverse water gas shift reaction, dramatically higher than those of Pt catalysts reported in the literature. Operando mobile catalysis presents a promising strategy for designing high-efficiency heterogeneous catalysts for various chemical reactions and applications.
RESUMO
A renewable source of porcine macrophages derived from pluripotent stem cells (PSCs) would be a valuable alternative to primary porcine alveolar macrophages (PAMs) in the research of host-pathogen interaction mechanisms. We developed an efficient and rapid protocol, within 11 days, to derive macrophages from porcine PSCs (pPSCs). The pPSC-derived macrophages (pPSCdMs) exhibited molecular and functional characteristics of primary macrophages. The pPSCdMs showed macrophage-specific surface protein expression and macrophage-specific transcription factors, similar to PAMs. The pPSCdMs also exhibited the functional characteristics of macrophages, such as endocytosis, phagocytosis, porcine respiratory and reproductive syndrome virus infection and the response to lipopolysaccharide stimulation. Furthermore, we performed transcriptome sequencing of the whole differentiation process to track the fate transitions of porcine PSCs involved in the signaling pathway. The activation of transforming growth factor beta signaling was required for the formation of mesoderm and the inhibition of the transforming growth factor beta signaling pathway at the hematopoietic endothelium stage could enhance the fate transformation of hematopoiesis. In summary, we developed an efficient and rapid protocol to generate pPSCdMs that showed aspects of functional maturity comparable with PAMs. pPSCdMs could provide a broad prospect for the platforms of host-pathogen interaction mechanisms.
Assuntos
Macrófagos Alveolares , Células-Tronco Pluripotentes , Suínos , Animais , Endocitose , Hematopoese/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos Alveolares/citologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Mesoderma/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Transdução de Sinais/efeitos dos fármacos , Suínos/virologia , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fatores de TempoRESUMO
Bifunctional catalysts comprising metal and acid sites are commonly used for many reactions. Interfacial acid sites impact intermediate reactions more than other sites. However, controlling the type and amounts of interfacial acid sites by regulating metal-support interaction (MSI) via traditional methods is difficult. Thus, the influence of MSI on interfacial acid sites remains unclear. We prepared Pt-mTiO2/α-Al2O3 (m represents the cycle number of TiO2) catalysts via atomic layer deposition (ALD). New Brønsted acid sites were generated via Pt-TiO2 interaction, and the acidity was precisely regulated by regulating Pt-TiO2 interaction by changing the TiO2 nanolayer thickness. We chose levulinic acid (LA) hydrogenation as a model reaction. The catalytic activity varied with the TiO2 nanolayer thickness and was linearly correlated with the Ti-OH species (Brønsted acid) content. Pt-40TiO2/α-Al2O3, with the highest acid site content of 0.486â mmol/g, exhibited the best catalytic activity. Hydrogen spillover and water dissociation at the Pt-TiO2 interface promoted Ti-OH species generation.
RESUMO
The transcription factor promyelocytic leukemia zinc finger (PLZF, also known as ZBTB16) is critical for the self-renewal of spermatogonial stem cells (SSCs). However, the function of PLZF in SSCs is not clear. Here, we found that PLZF acted as an epigenetic regulator of stem cell maintenance and self-renewal of germ cells. The PLZF protein interacts with the ten-eleven translocation 1 (TET1) protein and subsequently acts as a modulator to regulate the expression of self-renewal-related genes. Furthermore, Transcription Factor 7-like 2 (TCF7L2) is promoted by the coordination of PLZF and Tri-methylation of lysine 4 on histone H3 (H3K4me3). In addition, testicular single-cell sequencing indicated that TCF7L2 is commonly expressed in the PLZF cluster. We demonstrated that PLZF directly targets TCF7L2 and alters the landscape of histone methylation in the SSCs nucleus. Meanwhile, the RD domain and Zn finger domain of PLZF synergize with H3K4me3 and directly upregulate TCF7L2 expression at the transcriptional level. Additionally, we identified a new association between PLZF and the histone methyltransferase EZH2 at the genomic level. Our study identified a new association between PLZF and H3K4me3, established the novel PLZF&TET1-H3K4me3-TCF7L2 axis at the genomic level which regulates undifferentiated spermatogonia, and provided a platform for studying germ cell development in male domestic animals.
Assuntos
Fatores de Transcrição Kruppel-Like , Espermatogônias , Masculino , Animais , Espermatogônias/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Testículo/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Background: Tafolecimab, a fully human proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibody developed for the treatment of hypercholesterolemia, demonstrated robust lipid-lowering efficacy and favorable safety in previous short-term studies. We aimed to assess the long-term efficacy and safety of tafolecimab in Chinese non-familial hypercholesterolemia (non-FH) patients. Methods: Non-FH patients at high or very-high cardiovascular risk with screening low-density lipoprotein cholesterol (LDL-C) level ≥1.8 mmol/L or non-FH patients with screening LDL-C level ≥3.4 mmol/L and on stable lipid-lowering therapy for at least 4 weeks, were randomized in a 2:2:1:1 ratio to receive subcutaneous tafolecimab 450 mg Q4W, tafolecimab 600 mg Q6W, placebo 450 mg Q4W, or placebo 600 mg Q6W, respectively, in the 48-week double-blind treatment period. The primary endpoint was the percent change from baseline to week 48 in LDL-C levels. Findings: A total of 618 patients were randomized and 614 patients received at least one dose of tafolecimab (n = 411) or placebo (n = 203). At week 48, tafolecimab induced significant reductions in LDL-C levels (treatment differences versus placebo [on-treatment estimand]: -65.0% [97.5% CI: -70.2%, -59.9%] for 450 mg Q4W; -57.3% [97.5% CI: -64.0%, -50.7%] for 600 mg Q6W; both P < 0.0001). Significantly more patients treated with tafolecimab achieved ≥50% LDL-C reductions, LDL-C < 1.8 mmol/L, and LDL-C < 1.4 mmol/L than placebo group at both dose regimens (all P < 0.0001). Furthermore, tafolecimab significantly reduced non-HDL-C, apolipoprotein B, and lipoprotein(a) levels. The most commonly-reported treatment emergent adverse events in the tafolecimab groups included upper respiratory infection, urinary tract infection and hyperuricemia. Interpretation: Tafolecimab dosed at 450 mg Q4W and 600 mg Q6W was safe and showed superior lipid-lowering efficacy versus placebo, providing a novel treatment option for Chinese hypercholesterolemia patients. Funding: This study was sponsored by Innovent Biologics, Inc.
RESUMO
Eif2s3y (eukaryotic translation initiation factor 2, subunit 3, structural gene Y-linked, Eif2s3y) is an essential gene for spermatogenesis. Early studies have shown that Eif2s3y can promote the proliferation of spermatogonial stem cells (SSCs) and can replace the Y chromosome together with sex-determining region Y (Sry) to transform SSCs into round spermatozoa. We injected lentiviral particles into the seminiferous tubules of mouse testes by sterile surgery surgically to establish overexpressing Eif2s3y testes. And then the mice were intraperitoneally injected with LPS to established the model of testis inflammation. Through RNA sequencing, qRT-PCR analysis, Western blot, co-culture etc., we found that Eif2s3y alleviated LPS-induced damage in mouse testes and maintained spermatogenesis. In testes with Eif2s3y overexpression, the seminiferous tubules were more regularly organized after exposure to LPS compared with the control. Eif2s3y performs its function by negatively regulating Adamts5 (a disintegrin and metalloproteinase containing a thrombospondin-1 motif), an extracellular matrix-degrading enzyme. ADAMTS5 shows a disruptive effect when the testis is exposed to LPS. Overexpression of Eif2s3y inhibited the TLR4/NFκB signaling pathway in the testis in response to LPS. Generally, our research shows that Eif2s3y protects the testis from LPS and maintains spermatogenesis by negatively regulating Adamts5.
Assuntos
Lipopolissacarídeos , Testículo , Masculino , Camundongos , Animais , Testículo/metabolismo , Lipopolissacarídeos/toxicidade , Espermatogênese/fisiologia , Espermatozoides/metabolismo , Túbulos Seminíferos , Espermatogônias , Proteína ADAMTS5 , Fatores de Transcrição/metabolismoRESUMO
OBJECTIVE: Heart failure with preserved ejection fraction (HFpEF) is a complex cardiovascular syndrome. Along with pro-inflammatory and metabolic factors, epicardial adipose tissue (EAT) is believed to play a key role in the pathogenesis of HFpEF. Studies have increasingly shown a critical role of circRNAs in the development of cardiovascular diseases; however, their role in the pathogenetic mechanism of HFpEF is not well characterized. The objective of this study was to investigate the expression profiles of circRNAs in EAT of HFpEF patients. METHODS: Samples of epicardial adipose tissue were obtained from patients with HFpEF (n=5) and patients without heart failure (non-HF; n=5). CircRNA expression profiles were screened using RNA sequencing method. RNA-sequencing results were confirmed by qRT-PCR analysis. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed on the differentially expressed circRNAs. RESULTS: A total of 131 circRNAs were differentially expressed between HFpEF and non-HF groups (77 upregulated and 54 downregulated). Among these, hsa_circ_0118464 corresponding to HECW2 gene which showed the highest fold-change was assessed by qRT-PCR, and the outcome was consistent with RNA-sequencing results. The differentially expressed circRNAs corresponded to genes mainly involved in regulation of cellular and metabolic processes. CONCLUSION: This study provides the expression profile of circRNAs in EAT of HFpEF patients and the associated molecular mechanism. Our findings may provide insight into diagnostic markers and therapeutic targets in the context of HFpEF.
RESUMO
BACKGROUND: Intensive systolic blood pressure (SBP) lowering has been increasingly used; however, its effect on cardiac remodeling remains not fully understood. This secondary analysis of the Strategy of Blood Pressure Intervention in the Elderly Hypertensive Patients trial aims to determine the changes in left ventricular hypertrophy (LVH) that occur in the context of intensive SBP lowering. METHODS: A total of 7141 older patients with hypertension were randomly assigned to intensive treatment (SBP target, 110-130 mm Hg) or standard treatment (130-150 mm Hg). LVH was defined according to the Peguero-Lo Presti criteria on a standard 12-lead echocardiogram. RESULTS: At baseline, the prevalence of LVH (16.6% versus 16.5%) and the mean Peguero-Lo Presti value (1811 versus 1808 µV) were comparable between the treatment groups. During a median follow-up of 3.24 years, intensive SBP lowering was associated with a significantly lower risk of new LVH occurrence (hazard ratio, 0.76 [95% CI, 0.66-0.89]; P=0.001) and slower progression of the mean Peguero-Lo Presti index value by -23.47 µV/y (95% CI, -34.93 to -12.01; P=0.000). However, the rates of regression of baseline LVH did not differ significantly. Notably, the beneficial effect of intensive SBP lowering in terms of cardiovascular events (hazard ratio, 0.75 [95% CI, 0.59-0.97]) was not markedly attenuated after adjusting for LVH as a time-varying covariate (hazard ratio, 0.76 [95% CI, 0.59-0.97]). CONCLUSIONS: Intensive SBP lowering protects against LVH development in older hypertensive patients, however, this favorable effect could not explain most of the reduction in cardiovascular events associated with intensive SBP lowering.
Assuntos
Hipertensão , Hipertrofia Ventricular Esquerda , Humanos , Idoso , Pressão Sanguínea , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Hipertrofia Ventricular Esquerda/epidemiologia , Eletrocardiografia , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Ecocardiografia , Anti-Hipertensivos/uso terapêutico , Anti-Hipertensivos/farmacologiaRESUMO
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been reapproved for heart failure (HF) therapy in patients with and without diabetes. However, the initial glucose-lowering indication of SGLT2i has impeded their uses in cardiovascular clinical practice. A challenge of SGLT2i then becomes how to separate their anti-HF activity from glucose-lowering side-effect. To address this issue, we conducted structural repurposing of EMPA, a representative SGLT2 inhibitor, to strengthen anti-HF activity and reduce the SGLT2-inhibitory activity according to structural basis of inhibition of SGLT2. Compared to EMPA, the optimal derivative JX01, which was produced by methylation of C2-OH of the glucose ring, exhibited weaker SGLT2-inhibitory activity (IC50 > 100 nmol/L), and lower glycosuria and glucose-lowering side-effect, better NHE1-inhibitory activity and cardioprotective effect in HF mice. Furthermore, JX01 showed good safety profiles in respect of single-dose/repeat-dose toxicity and hERG activity, and good pharmacokinetic properties in both mouse and rat species. Collectively, the present study provided a paradigm of drug repurposing to discover novel anti-HF drugs, and indirectly demonstrated that SGLT2-independent molecular mechanisms play an important role in cardioprotective effects of SGLT2 inhibitors.
RESUMO
Background: It has been well acknowledged that disordered intestinal microflora and their fermented products play crucial role during the development of hypertension (HTN). Aberrant profiles of fecal bacteria have been documented in subjects with isolated systolic HTN (ISH) and isolated diastolic HTN (IDH) previously. Nevertheless, evidence regarding the association of metabolic products in the bloodstream with ISH, IDH and combined systolic and diastolic HTN (SDH) remains scarce. Methods: We performed a cross-sectional study and conducted untargeted liquid chromatography-mass spectrometry (LC/MS) analysis on serum samples of 119 participants, including 13 subjects with normotension (SBP < 120/DBP < 80â mm Hg), 11 individuals with ISH (SBP ≥ 130/DBP < 80â mm Hg), 27 patients with IDH (SBP < 130/DBP ≥ 80â mm Hg), and 68 SDH patients (SBP ≥ 130, DBP ≥ 80â mm Hg). Results: Here, the results showed clearly separated clusters in PLS-DA and OPLS-DA score plots for patients suffering from ISH, IDH and SDH when compared with normotension controls. The ISH group was characterized by elevated levels of 3,5-tetradecadien carnitine and notable reduction of maleic acid. While IDH patients were enriched with metabolites in L-lactic acid and depleted in citric acid. Stearoylcarnitine was identified to be specifically enriched in SDH group. The differentially abundant metabolites between ISH and controls were involved in tyrosine metabolism pathways, and in biosynthesis of phenylalanine for those between SDH and controls. Potential linkages between the gut microbial and serum metabolic signatures were detected within ISH, IDH and SDH groups. Furthermore, we found the association of discriminatory metabolites with the characteristics of patients. Conclusion: Our findings demonstrate disparate blood metabolomics signatures across ISH, IDH and SDH, with differentially enriched metabolites and potential functional pathways identified, reveal the underlying microbiome and metabolome network in HTN subtypes, and provide potential targets for disease classification and therapeutic strategy in clinical practice.
RESUMO
Emerging evidence suggests an association of dysbiotic gut microbiota (GM) with atrial fibrillation (AF). The current study aimed to determine whether aberrant GM promotes AF development. A fecal microbiota transplantation (FMT) mouse model demonstrated that dysbiotic GM is sufficient to enhance AF susceptibility assessed by transesophageal burst pacing. Compared with recipients transplanted with GM obtained from healthy subjects (FMT-CH), the prolonged P wave duration and an enlarging tendency for the left atrium were detected in recipients transplanted with AF GM (FMT-AF). Meanwhile, the disrupted localizations of connexin 43 and N-cadherin and increased expression levels of phospho-CaMKII and phospho-RyR2, were observed in the atrium of FMT-AF, which indicated aggravated electrical remodeling caused by the altered gut flora. Specifically, exacerbated fibrosis disarray, collagen deposition, α-SMA expression, and inflammation in the atrium were also confirmed to be transmissible by the GM. Furthermore, deteriorated intestinal epithelial barrier and intestinal permeability, accompanied by disturbing metabolomic features in both feces and plasma, especially decreased linoleic acid (LA), were identified in FMT-AF mice. Subsequently, the anti-inflammatory role of LA among the imbalanced SIRT1 signaling discovered in the atrium of FMT-AF was confirmed in mouse HL-1 cells treated with LPS/nigericin, LA, and SIRT1 knockdown. This study provides preliminary insights into the causal role of aberrant GM in the pathophysiology of AF, suggesting the GM-intestinal barrier-atrium axis might participate in the vulnerable substrates for AF development, and the GM could be utilized as an environmental target in AF management.
Assuntos
Fibrilação Atrial , Microbioma Gastrointestinal , Animais , Camundongos , Fibrilação Atrial/etiologia , Fibrilação Atrial/terapia , Microbioma Gastrointestinal/fisiologia , Átrios do Coração , Ácido Linoleico , Sirtuína 1/genéticaRESUMO
A cage hybrid (C-Cage-PB) was developed by electrostatic complexation of a quaternary ammonium cage (C-Cage+) and an anionic inorganic Prussian blue (PB-). Given the unique synergy of the two parts, such a cage hybrid can be used as a promising platform for the efficient removal of toxic compounds in wastewater through adsorption, delivery or catalytic degradation via a Fenton oxidation reaction. In addition, C-Cage-PB can encapsulate Pd clusters, which amplifies the function of the hybrid for enhanced catalytic performance in the sequential degradation of toxic organic compounds and heavy metal pollution in wastewater treatment.