Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 699
Filtrar
1.
Front Neurol ; 15: 1389950, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846042

RESUMO

Background and objective: Current data on the optimal treatment modality for ruptured anterior communicating artery (AComA) aneurysms are limited. We conducted this multicenter retrospective study to evaluate the safety and clinical outcomes of endovascular treatment (EVT) and microsurgical clipping (MC) for the treatment of ruptured AComA patients. Methods: Patients with ruptured AComA aneurysms were screened from the Chinese Multicenter Cerebral Aneurysm Database. Propensity score matching (PSM) was used to adjust for baseline characteristic imbalances between the EVT and MC groups. The safety outcomes included total procedural complications, procedure-related morbidity/death and remedial procedure for complication. The primary clinical outcome was 2-year functional independence measured by the modified Rankin scale (mRS) score. Results: The analysis included 893 patients with ruptured AComA aneurysms (EVT: 549; MC: 346). PSM yielded 275 pairs of patients in the EVT and MC cohorts for comparison. Decompressive craniectomy being more prevalent in the MC group (19.3% vs. 1.5%, p < 0.001). Safety data revealed a lower rate of total procedural complications (odds ratio [OR] = 0.62, 95% CI 0.39-0.99; p = 0.044) in the EVT group and similar rates of procedure-related morbidity/death (OR = 0.91, 95% CI 0.48-1.73; p = 0.880) and remedial procedure for complication (OR = 1.35, 95% CI 0.51-3.69, p = 0.657) between the groups. Compared with that of MC patients, EVT patients had a greater likelihood of functional independence (mRS score 0-2) at discharge (OR = 1.68, 95% CI 1.14-2.50; p = 0.008) and at 2 years (OR = 1.89, 95% CI 1.20-3.00; p = 0.005), a lower incidence of 2-year all-cause mortality (OR = 0.54, 95% CI 0.31-0.93; p = 0.023) and a similar rate of retreatment (OR = 1.00, 95% CI 0.23-4.40; p = 1.000). Conclusion: Clinical outcomes after treatment for ruptured AComA aneurysms appear to be superior to those after treatment with MC, with fewer overall procedure-related complications and no increase in the retreatment rate. Additional studies in other countries are needed to verify these findings.

2.
Front Psychiatry ; 15: 1397006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827447

RESUMO

Objective: The role of different immune cells in autism spectrum disorders (ASD) is still controversial. The purpose of this study was to evaluate the causal effects of different immune cell phenotypes on ASD via Mendelian randomization (MR). Methods: Datasets of immune cell phenotypes were obtained from the European Bioinformatics Institute, and datasets of ASD were obtained from the IEU Open GWAS project. Single nucleotide polymorphisms were selected based on the assumptions of association, independence, and exclusivity. Inverse variance weighted was utilized as the main method for MR analysis. MR-Egger was employed to assess the horizontal pleiotropy of the results. Cochran's Q and leave-one-out method were used for heterogeneity analysis and sensitivity analysis of the results, respectively. Results: MR analysis showed that TD CD8br AC [odds ratio (OR), 1.137; 95% confidence interval (CI), 1.031-1.254; p = 0.010], CD8br %leukocyte (OR, 1.142; 95% CI, 1.067-1.223; p < 0.001), CD8br and CD8dim %leukocyte (OR, 1.117; 95% CI, 1.032-1.210; p = 0.006), naive CD8br %T cell (OR, 1.052; 95% CI, 1.004-1.104; p = 0.035), CD28- CD8dim %T cell (OR, 1.097; 95% CI, 1.038-1.158; p < 0.001), CD127- CD8br AC (OR, 1.086; 95% CI, 1.006-1.171; p = 0.034), CD45 on CD8br (OR, 1.059; 95% CI, 1.021-1.099; p = 0.002), CD3 on HLA DR+ CD8br (OR, 1.098; 95% CI, 1.041-1.158; p < 0.001), CD4 on activated Treg (OR, 1.048; 95% CI, 1.001-1.096; p = 0.046), CD3 on CD39+ resting Treg (OR, 1.070; 95% CI, 1.012-1.131; p = 0.018), IgD+ CD38- %lymphocyte (OR, 1.103; 95% CI, 1.023-1.190; p = 0.011), CD62L- plasmacytoid DC %DC (OR, 1.046; 95% CI, 1.001-1.093; p = 0.046), and FSC-A on plasmacytoid DC (OR, 1.075; 95% CI, 1.003-1.153; p = 0.042) were associated with increased genetic susceptibility to ASD. MR-Egger displayed no horizontal pleiotropy (p ≥ 0.05). Cochran's Q revealed no heterogeneity of results (p ≥ 0.05). Sensitivity analysis indicated that the results were robust. Conclusion: This MR analysis revealed 13 immune cell phenotypes associated with increased genetic susceptibility to ASD and emphasized the importance of CD8 T cells and Tregs, which provides new directions for the pathogenesis and drug research of ASD.

3.
Nat Commun ; 15(1): 4703, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830868

RESUMO

Nuclear factor erythroid 2-related factor 2 (NRF2) hyperactivation has been established as an oncogenic driver in a variety of human cancers, including non-small cell lung cancer (NSCLC). However, despite massive efforts, no specific therapy is currently available to target NRF2 hyperactivation. Here, we identify peptidylprolyl isomerase A (PPIA) is required for NRF2 protein stability. Ablation of PPIA promotes NRF2 protein degradation and blocks NRF2-driven growth in NSCLC cells. Mechanistically, PPIA physically binds to NRF2 and blocks the access of ubiquitin/Kelch Like ECH Associated Protein 1 (KEAP1) to NRF2, thus preventing ubiquitin-mediated degradation. Our X-ray co-crystal structure reveals that PPIA directly interacts with a NRF2 interdomain linker via a trans-proline 174-harboring hydrophobic sequence. We further demonstrate that an FDA-approved drug, cyclosporin A (CsA), impairs the interaction of NRF2 with PPIA, inducing NRF2 ubiquitination and degradation. Interestingly, CsA interrupts glutamine metabolism mediated by the NRF2/KLF5/SLC1A5 pathway, consequently suppressing the growth of NRF2-hyperactivated NSCLC cells. CsA and a glutaminase inhibitor combination therapy significantly retard tumor progression in NSCLC patient-derived xenograft (PDX) models with NRF2 hyperactivation. Our study demonstrates that targeting NRF2 protein stability is an actionable therapeutic approach to treat NRF2-hyperactivated NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias Pulmonares , Fator 2 Relacionado a NF-E2 , Estabilidade Proteica , Ubiquitinação , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Camundongos , Linhagem Celular Tumoral , Progressão da Doença , Proteólise , Camundongos Nus , Feminino , Peptidilprolil Isomerase de Interação com NIMA
4.
Nat Commun ; 15(1): 4702, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830878

RESUMO

Magnetoelectric materials, which encompass coupled magnetic and electric polarizabilities within a single phase, hold great promises for magnetic controlled electronic components or electric-field controlled spintronics. However, the realization of ideal magnetoelectric materials remains tough due to the inborn competion between ferroelectricity and magnetism in both levels of symmetry and electronic structure. Herein, we introduce a methodology for constructing single phase paramagnetic ferroelectric molecule [TMCM][FeCl4], which shows low-magnetic-field magnetoelectricity at room temperature. By applying a low magnetic field (≤1 kOe), the halogen Cl‧‧‧Cl distance and the volume of [FeCl4]- anions could be manipulated. This structural change causes a characteristic magnetostriction hysteresis, resulting in a substantial deformation of ~10-4 along the a-axis under an in-plane magnetic field of 2 kOe. The magnetostrictive effect is further qualitatively simulated by density functional theory calculations. Furthermore, this mechanical deformation significantly dampens the ferroelectric polarization by directly influencing the overall dipole configuration. As a result, it induces a remarkable α31 component (~89 mV Oe-1 cm-1) of the magnetoelectric tensor. And the magnetoelectric coupling, characterized by the change of polarization, reaches ~12% under 40 kOe magnetic field. Our results exemplify a design methodology that enables the creation of room-temperature magnetoelectrics by leveraging the potent effects of magnetostriction.

5.
Front Nutr ; 11: 1367589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706565

RESUMO

Introduction: Taurine has a prominent lipid-lowering effect on hyperlipidemia. However, a comprehensive analysis of the effects of taurine on endogenous metabolites in hyperlipidemia has not been documented. This study aimed to explore the impact of taurine on multiple metabolites associated with hyperlipidemia. Methods: The hyperlipidemic mouse model was induced by high-fat diet (HFD). Taurine was administered via oral gavage at doses of 700 mg/kg/day for 14 weeks. Evaluation of body weight, serum lipid levels, and histopathology of the liver and adipose tissue was performed to confirm the lipid-lowering effect of taurine. Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS)-based metabonomics analyses of serum, urine, feces, and liver, coupled with multivariate data analysis, were conducted to assess changes in the endogenous metabolites. Results and discussion: Biochemical and histological examinations demonstrated that taurine administration prevented weight gain and dyslipidemia, and alleviated lipid deposition in the liver and adipose tissue in hyperlipidemic mice. A total of 76 differential metabolites were identified by UPLC-MS-based metabolomics approach, mainly involving BAs, GPs, SMs, DGs, TGs, PUFAs and amino acids. Taurine was found to partially prevent HFDinduced abnormalities in the aforementioned metabolites. Using KEGG database and MetaboAnalyst software, it was determined that taurine effectively alleviates metabolic abnormalities caused by HFD, including fatty acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, diacylglycerol metabolism, amino acid metabolism, bile acid and taurine metabolism, taurine and hypotaurine metabolism. Moreover, DGs, GPs and SMs, and taurine itself may serve as active metabolites in facilitating various anti-hyperlipidemia signal pathways associated with taurine. This study provides new evidence for taurine to prevent hyperlipidemia.

6.
Metab Brain Dis ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801506

RESUMO

Diabetic cognitive impairment is a common complication in type 2 diabetes. Berberine (BBR) is an isoquinoline alkaloid that has been shown to have neuroprotective effects against diabetes. This study aimed to investigate the effect of BBR on the gray and white matter of the brain by using magnetic resonance imaging (MRI) and to explore the underlying mechanisms. The study used diabetic db/db mice and administered BBR (50 and 100 mg/kg) intragastrically for twelve weeks. Morris water maze was applied to examine cognitive function. T2-weighted imaging (T2WI) was performed to assess brain atrophy, and diffusion tensor imaging (DTI) combined with fiber tracking was conducted to monitor the structural integrity of the white matter, followed by histological immunostaining. Furthermore, the protein expressions of the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT)/ glycogen synthase kinase-3ß (GSK-3ß) were detected. The results revealed that BBR significantly improved the spatial learning and memory of the db/db mice. T2WI exhibited ameliorated brain atrophy in the BBR-treated db/db mice, as evidenced by reduced ventricular volume accompanied by increased hippocampal volumes. DTI combined with fiber tracking revealed that BBR increased FA, fiber density and length in the corpus callosum/external capsule of the db/db mice. These imaging findings were confirmed by histological immunostaining. Notably, BBR significantly enhanced the protein levels of phosphorylated AKT at Ser473 and GSK-3ß at Ser9. Collectively, this study demonstrated that BBR significantly improved the cognitive function of the diabetic db/db mice through ameliorating brain atrophy and promoting white matter reorganization via AKT/GSK-3ß pathway.

7.
Angew Chem Int Ed Engl ; : e202405228, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744669

RESUMO

Nacre is a classic model, providing an inspiration for fabricating high-performance bulk nanocomposites with the two-dimensional platelets. However, the "brick" of nacre, aragonite platelet, is an ideal building block for making high-performance bulk nanocomposites. Herein, we demonstrated a strong and tough conductive nacre through reassembling aragonite platelets with bridged by MXene nanosheets and hydrogen bonding, not only providing high mechanical properties but also excellent electrical conductivity. The flexural strength and fracture toughness of the obtained conductive nacre reach ~ 282 MPa and ~ 6.3 MPa m1/2, which is 1.6 and 1.6 times higher than that of natural nacre, respectively. These properties are attributed to densification and high orientation degree of the conductive nacre, which is effectively induced by the combined interactions of hydrogen bonding and MXene nanosheets bridging. The crack propagations in conductive nacre are effectively inhibited through crack deflection with hydrogen bonding, and MXene nanosheets bridging between aragonite platelets. In addition, our conductive nacre also provides a self-monitoring function for structural damage and offers exceptional electromagnetic interference shielding performance. Our strategy of reassembling the aragonite platelets exfoliated from waste nacre into high-performance artificial nacre, provides an avenue for fabricating high-performance bulk nanocomposites through the sustainable reutilization of shell resources.

8.
Angew Chem Int Ed Engl ; : e202406182, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806444

RESUMO

Dual-ion batteries (DIBs) present great application potential in low-temperature energy storage scenarios due to their unique dual-ion working mechanism. However, at low temperatures, the insufficient electrochemical oxidation stability of electrolytes and depressed interfacial compatibility impair the DIB performance. Here, we design a variant-localized high-concentration solvation structure for universal low-temperature electrolytes (ν-LHCE) without the phase separation via introducing an extremely weak-solvating solvent with low energy levels. The unique solvation structure gives the ν-LHCE enhanced electrochemical oxidation stability. Meanwhile, the extremely weak-solvating solvent can competitively participate in the Li+-solvated coordination, which improves the Li+ transfer kinetics and boosts the formation of robust interphases.Thus, the ν-LHCE electrolyte not only has a good high-voltage stability of >5.5 V and proper Li+ transference number of 0.51 but also shows high ionic conductivities of 1 mS/cm at low temperatures. Consequently, the ν-LHCE electrolyte enables different types of batteries to achieve excellent long-term cycling stability and good rate capability at both room and low temperatures. Especially, the capacity retentions of the DIB are 77.7% and 51.6 %, at -40 oC and -60 oC, respectively, indicating great potential for low- and temperature energy storage applications, such as polar exploration,emergency communication equipment, and energy storage station in cold regions.

9.
Small ; : e2404000, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809060

RESUMO

Multifunctional electrocatalysts for hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) have broad application prospects; However, realization of such kinds of materials remain difficulties because it requires the materials to have not only unique electronic properties, but multiple active centers to deal with different reactions. Here, employing density functional theory (DFT) computations, it is demonstrated that by decorating the Janus-type 2D transition metal dichalcogenide (TMD) of TaSSe with the single atoms, the materials can achieve multifunctionality to catalyze the ORR/OER/HER/HOR. Out of sixteen catalytic systems, Pt-VS (i.e., Pt atom embedded in the sulfur vacancy), Pd-VSe, and Pt-VSe@TaSSe are promising multifunctional catalysts with superior stability. Among them, the Pt-VS@TaSSe catalyst exhibits the highest activity with theoretical overpotentials ηORR = 0.40 V, ηOER = 0.39 V, and ηHER/HOR = 0.07 V, respectively, better than the traditional Pt (111), IrO2 (110). The interplays between the catalyst and the reaction intermediate over the course of the reaction are then systematically investigated. Generally, this study presents a viable approach for the design and development of advanced multifunctional electrocatalysts. It enriches the application of Janus, a new 2D material, in electrochemical energy storage and conversion technology.

10.
Sci Rep ; 14(1): 12215, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806667

RESUMO

Multi-generational asexual reproduction of Gastrodia elata Bl. will cause seedling species degeneration. Sexual reproduction of Gastrodia elata Bl. seed is an effective method to solve the problem of degeneration. The development of Gastrodia elata Bl. seeds cannot be separated from the germination fungus. However, there are few strains of germination fungus in production, and there is also the problem of species degradation in application for many years. It is very important for the sexual reproduction of Gastrodia elata Bl. to isolate more new strains of excellent germination fungus from the origin. This study used the Gastrodia elata Bl. f. glauca S. chow seeds germination vegetative propagation corms capture method to isolate its symbiotic germination fungus, and comprehensively identified the species of germination fungus by colony morphology, ITS, sporocarps regeneration and germination function, and compared the growth characteristics and germination ability with other germination fungus (Mycena purpureofusca, Mycena dendrobii and Mycena osmundicola). The germination fungus was isolated from the vegetative propagation corms of Gastrodia elata Bl. f. glauca S. chow seeds and named GYGL-1. After comprehensive identification, GYGL-1 was Mycetinis scorodonius. Compared with other germination fungus, GYGL-1 has fast germination speed, vigorous growth, and high germination ability for Gastrodia elata Bl. f. glauca S. chow seeds. Innovated the isolation method of Gastrodia elata Bl. seeds germination fungus, obtained the regenerated sporocarps of the germination fungus, and discovered that Mycetinis scorodonius has a new function of germinating Gastrodia elata Bl. f. glauca S. chow seeds, enriching the resource library of Gastrodia elata Bl. germination fungus.


Assuntos
Gastrodia , Germinação , Sementes , Gastrodia/microbiologia , Sementes/microbiologia , Sementes/crescimento & desenvolvimento , Plântula/microbiologia , Plântula/crescimento & desenvolvimento
11.
Planta ; 260(1): 6, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780795

RESUMO

MAIN CONCLUSION: TaAGL66, a MADS-box transcription factor highly expressed in fertile anthers of KTM3315A, regulates anther and/or pollen development, as well as male fertility in wheat with Aegilops kotschyi cytoplasm. Male sterility, as a string of sophisticated biological processes in higher plants, is commonly regulated by transcription factors (TFs). Among them, MADS-box TFs are mainly participated in the processes of floral organ formation and pollen development, which are tightly related to male sterility, but they have been little studied in the reproductive development in wheat. In our study, TaAGL66, a gene that was specifically expressed in spikes and highly expressed in fertile anthers, was identified by RNA sequencing and the expression profiles data of these genes, and qRT-PCR analyses, which was localized to the nucleus. Silencing of TaAGL66 under fertility condition in KTM3315A, a thermo-sensitive male sterile line with Ae. kotschyi cytoplasm, displayed severe fertility reduction, abnormal anther dehiscence, defective pollen development, decreased viability, and low seed-setting. It can be concluded that TaAGL66 plays an important role in wheat pollen development in the presence of Ae. kotschyi cytoplasm, providing new insights into the utilization of male sterility.


Assuntos
Aegilops , Citoplasma , Fertilidade , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas , Proteínas de Plantas , Pólen , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Citoplasma/metabolismo , Citoplasma/genética , Pólen/genética , Pólen/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aegilops/genética , Infertilidade das Plantas/genética , Fertilidade/genética , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Genes de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Biochem Pharmacol ; 225: 116314, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797271

RESUMO

Atherosclerosis, a chronic inflammatory disease, is the most relevant cause of carotid artery stenosis. Vascular endothelial cells (ECs) play a significant role in the development of atherosclerosis. In this chronic inflammatory environment, we aimed to investigate whether PCSK9 could mitigate atherosclerosis progression by reducing tissue factor expression in ECs via in vivo and in vitro assays. In vivo, we investigated the effect of PCSK9 inhibition on preventing atherosclerotic lesion formation in ApoE-/- mice fed a western diet. The results showed that inhibiting PCSK9 could significantly downregulate the protein expression of tissue factor (TF) in ECs to reduce the area of atherosclerotic plaques. In vitro, we incubated human umbilical vein endothelial cells (HUVECs) with lipopolysaccharide (LPS). We found that LPS-induced TF elevation was suppressed by a PCSK9 inhibitor at both the mRNA and protein levels and that the TLR4/NF-κB pathway was also suppressed by a PCSK9 inhibitor. With respect to plasma samples from patients with carotid artery stenosis, we also demonstrated that the expression of TF was positively correlated with that of PCSK9. Thus, in addition to regulating lipid metabolism, the regulation of endothelial cell TF expression through the TLR4/NF-κB pathway may be a potential mechanism of PCSK9 in promoting atherosclerotic carotid stenosis.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38692477

RESUMO

OBJECTIVE: Our previous study demonstrated that modified subxiphoid video-assisted thoracic surgery thymectomy with an auxiliary sternal retractor is feasible for locally invasive thymic malignancies. This study aimed to compare perioperative and oncological outcomes of modified subxiphoid video-assisted thoracoscopic surgery thymectomy versus median sternotomy thymectomy for locally advanced thymic malignancies. METHODS: In total, 221 patients with T2-3 thymic malignancies who underwent modified subxiphoid video-assisted thoracoscopic surgery thymectomy or median sternotomy thymectomy between 2015 and 2020 were enrolled in our prospectively maintained database. A 1:1 propensity score-matching analysis was performed to balance the bias. Surgical difficulty was evaluated with a modified resection index. Perioperative and oncological results were compared between the modified subxiphoid video-assisted thoracoscopic surgery thymectomy group and the median sternotomy thymectomy group. RESULTS: There were 72 patients in each group in the final analysis. Our results showed that the modified subxiphoid video-assisted thoracoscopic surgery thymectomy group had a shorter operative duration (98 vs 129 minutes, P < .001), less blood loss (40 vs 100 mL, P < .001), shorter drainage duration (3 vs 5 days, P < .001), shorter length of hospital stay (5 vs 6 days, P < .001), and fewer postoperative complications (5.6% vs 23.6%; P = .005). No significant difference was detected in complete resection (98.6% vs 98.6%, P = 1.000) between the 2 groups. Conversion occurred in 5 of 106 patients (4.7%). Survival analyses indicated similar recurrence-free survival (hazard ratio, 0.94; 95% CI, 0.40-2.20; P = .883) and overall survival (hazard ratio, 0.52; 95% CI, 0.05-5.02; P = .590) between the 2 groups. CONCLUSIONS: Modified subxiphoid video-assisted thoracoscopic surgery thymectomy was safe and effective for T2-3 thymic malignancies and could be an alternative for selected patients with locally advanced thymic diseases. Further prospective studies are needed to evaluate the long-term survival of those undergoing modified subxiphoid approach thoracoscopic thymectomy.

14.
Free Radic Biol Med ; 220: 139-153, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705495

RESUMO

Epigenetic changes are important considerations for degenerative diseases. DNA methylation regulates crucial genes by epigenetic mechanism, impacting cell function and fate. DNA presents hypermethylation in degenerated nucleus pulposus (NP) tissue, but its role in intervertebral disc degeneration (IVDD) remains elusive. This study aimed to demonstrate that methyltransferase mediated hypermethylation was responsible for IVDD by integrative bioinformatics and experimental verification. Methyltransferase DNMT3B was highly expressed in severely degenerated NP tissue (involving human and rats) and in-vitro degenerated human NP cells (NPCs). Bioinformatics elucidated that hypermethylated genes were enriched in oxidative stress and ferroptosis, and the ferroptosis suppressor gene SLC40A1 was identified with lower expression and higher methylation in severely degenerated human NP tissue. Cell culture using human NPCs showed that DNMT3B induced ferroptosis and oxidative stress in NPCs by downregulating SLC40A1, promoting a degenerative cell phenotype. An in-vivo rat IVDD model showed that DNA methyltransferase inhibitor 5-AZA alleviated puncture-induced IVDD. Taken together, DNA methyltransferase DNMT3B aggravates ferroptosis and oxidative stress in NPCs via regulating SLC40A1. Epigenetic mechanism within DNA methylation is a promising therapeutic biomarker for IVDD.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , DNA Metiltransferase 3B , Ferroptose , Degeneração do Disco Intervertebral , Núcleo Pulposo , Estresse Oxidativo , Adulto , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Azacitidina/farmacologia , Modelos Animais de Doenças , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Epigênese Genética , Ferroptose/genética , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Ratos Sprague-Dawley , Regulação para Cima
16.
Signal Transduct Target Ther ; 9(1): 132, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38763973

RESUMO

Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.


Assuntos
Biomarcadores Tumorais , Neoplasias , Medicina de Precisão , Humanos , Biomarcadores Tumorais/genética , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Prognóstico , Terapia de Alvo Molecular
17.
Cell Rep Med ; : 101576, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38776909

RESUMO

Chemotherapy remains the first-line treatment for advanced esophageal cancer. However, durable benefits are achieved by only a limited subset of individuals due to the elusive chemoresistance. Here, we utilize patient-derived xenografts (PDXs) from esophageal squamous-cell carcinoma to investigate chemoresistance mechanisms in preclinical settings. We observe that activated cancer-associated fibroblasts (CAFs) are enriched in the tumor microenvironment of PDXs resistant to chemotherapy. Mechanistically, we reveal that cancer-cell-derived S100A8 triggers the intracellular RhoA-ROCK-MLC2-MRTF-A pathway by binding to the CD147 receptor of CAFs, inducing CAF polarization and leading to chemoresistance. Therapeutically, we demonstrate that blocking the S100A8-CD147 pathway can improve chemotherapy efficiency. Prognostically, we found the S100A8 levels in peripheral blood can serve as an indicator of chemotherapy responsiveness. Collectively, our study offers a comprehensive understanding of the molecular mechanisms underlying chemoresistance in esophageal cancer and highlights the potential value of S100A8 in the clinical management of esophageal cancer.

18.
Micromachines (Basel) ; 15(5)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38793234

RESUMO

This paper proposes an improved method to calculate the mutual capacitance between interdigital transducer (IDT) electrodes to enhance the accuracy of the traditional coupling-of-modes (COM) model, which is commonly used to simulate surface acoustic wave (SAW) filters and duplexers. In this method, the boundary element method (BEM) is adopted to obtain the capacitance per unit length in a layered medium, while the partial capacitance (PC) method is used to derive the effective relative permittivity of the multi-layered IDT. Numerical results from commercially available software are provided for comparison with the results calculated using the proposed method. The consistent results verify the validity and accuracy of this method, which also demonstrates significantly faster calculation speed compared to commercially available software. Precise electrical response prediction of a dual-mode SAW (DMS) filter can be achieved by applying this method to the COM model, and this ultra-fast calculation method can also be included in filter design optimization.

19.
Neoplasia ; 54: 101007, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796932

RESUMO

B7-H4 is a promising immune checkpoint molecule in tumor immunotherapy. Our previous study showed that high B7-H4 expression was strongly correlated with deficiency in tumor infiltrated lymphocytes (TILs) in glioma patients. On this basis, we investigated the impact of B7-H4 on CD8+TILs in gliomas and the associated molecular mechanism here. B7-H4-positive tumor samples (n=129) from our glioma cohort were used to assess B7-H4 expression and CD8+TIL quantification by immunohistochemistry. CD8+TILs from five glioma patients cultured with B7-H4 protein were used to evaluate anti-tumor dysfunction by flow cytometry and ELISpot. An orthotopic murine glioma model was used to investigate the role of B7-H4 in glioma CD8+TILs by immunohisto- chemistry and flow cytometry. CD8+TILs from glioma patients cultured with B7-H4 protein were used to explore the potential molecular mechanism by RNA sequencing and western blot. Our results showed that glioma CD8+TIL density was negatively correlated with B7-H4 expression both in glioma patient cohort (P < 0.05) and orthotopic glioma murine model (P < 0.01). B7-H4 also lowered the expression of CD137 and CD103 (P < 0.05 for both) in glioma CD8+TILs and reduced their secretion of the anti-tumor cytokines IFN-γ and TNF-α (P < 0.01 for both) in a dose-dependent manner. Furthermore, B7-H4 was found to induce early dysfunction of glioma CD8+TILs by downregulating the phosphorylation of AKT and eNOS (P < 0.05 for both). In conclusion, B7-H4 reduced the infiltration of glioma CD8+TILs and induced an anti-tumor dysfunction phenotype. B7-H4 may also impair the anti-tumor function of glioma CD8+TILs via the AKT-eNOS pathway. These results indicated that B7-H4 may serve as a potential target in future glioma immunotherapy.

20.
Nat Prod Res ; : 1-5, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813681

RESUMO

The phenomena of intramolecular self-assembly of bidesmosidic kalopanaxsaponins was identified for the first time in this paper. NMR (1H-NMR, NOESY), transmission electron microscopy (TEM), and molecular dynamics (MD) simulation techniques were used to compare the spatial structures of bidesmosidic kalopanaxsaponins and monodesmosidic kalopanaxsaponins. The results showed that the bidesmosidic kalopanaxsaponins formed a clustered and twisted structure in space, whereas the monodesmosidic kalopanaxsaponins were in an extended state. This discovery confirmed the presence of intramolecular self-assembly in bidesmosidic kalopanaxsaponins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA