Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Int Immunopharmacol ; 140: 112827, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39116497

RESUMO

AIM: Hyperhomocysteine has been recognized as an independent risk factor of multiple diseases, including several eye diseases. In this study, we aim to investigate whether increased homocysteine (Hcy) is related to cataracts, and to explore whether dysregulation of mTOR-mediated autophagy and connexin expression are underlying mechanisms. METHOD: We first developed a method of liquid chromatography tandem mass spectrometry to accurately measure serum concentrations of Hcy in 287 cataract patients and 334 healthy controls. Next, we treated human lens epithelial (HLC-B3) cells with Hcy at different concentrations and durations, and then analyzed expression of autophagy-related markers and connexins, as well as phosphorylated mTOR (p-mTOR) in these cells by Western blotting. Formation of autophagic vacuoles and intracellular Ca2+ in the Hcy-treated cells were observed by fluorescence microscopy. Further, we performed a rescue experiment in the Hcy-treated HLC-B3 cells by pre-incubation with rapamycin, an mTOR inhibitor. RESULTS: The serum levels of Hcy in patients with cataracts were significantly increased compared to those in healthy controls. In cultured HLC-B3 cells, expression of autophagy related markers (LC3B and Beclin1) and connexins (Cx43 and Cx50) was inhibited by Hcy treatment in a dose- and duration-dependent manner. Accumulation of Ca2+ in the Hcy-treated lens epithelial cells was observed as a consequence of reduced connexin expression. Meanwhile, expression of p-mTOR increased, representing up-regulation of the mTOR pathway. Importantly, inhibition of autophagy and connexin expression due to hyperhomocysteine was rescued via mTOR suppression by pretreatment with rapamycin in HLC-B3 cells. CONCLUSION: Our results demonstrate that hyperhomocysteine might promote cataract development through two mTOR-mediated pathways in the lens epithelial cells: 1) dysregulation of autophagy and 2) accumulation of intracellular calcium via decreased connexin expression.

2.
J Am Heart Assoc ; : e035424, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140333

RESUMO

BACKGROUND: This study aimed to explore the effect of a P2Y12 inhibitor regimen on the occurrence of postoperative atrial fibrillation (POAF) after off-pump coronary artery bypass graft surgery in carriers with the cytochrome P450 family 2 subfamily C member19 loss-of-function allele. METHODS AND RESULTS: From May 2019 to November 2023, patients containing the cytochrome P450 family 2 subfamily C member19*2 or *3 allele undergoing elective first-time off-pump coronary artery bypass graft surgery including aspirin 100 mg/d and ticagrelor 180 mg/d (AT group; n=95) versus clopidogrel 75 mg/d (aspirin and clopidogrel group; n=95) were prospectively followed. The primary end point was the cumulative incidence of POAF in a week. The secondary end points were POAF burden, platelet aggregability, systemic immune-inflammation index and heart rate variability. The incidence of POAF was 21.1% in the AT group versus 41.1% in the aspirin and clopidogrel group (hazard ratio, 0.46 [95% CI, 0.27-0.76]; P=0.003). POAF burden, ADP-induced platelet aggregation and systemic immune-inflammation index was notably lower in the AT group than the aspirin and clopidogrel group. Heart rate variability data showed an increase in both high-frequency and SD of normal-to-normal RR intervals in the AT group with a decreased low-frequency/high-frequency ratio, suggesting that the sympathetic/parasympathetic activation was balanced. CONCLUSIONS: In patients carrying the cytochrome P450 family 2 subfamily C member19 loss-of-function allele, an AT regimen after off-pump coronary artery bypass grafting was associated with a lower incidence of POAF, paralleled by lower atrial fibrillation burden, ADP-induced platelet aggregation, lower systemic immune-inflammation index reaction, and a balanced automatic nerve system compared with an aspirin and clopidogrel regimen. Inhibiting the systemic immune-inflammation response and sustaining automatic nerve balance may underlie the therapeutic effect of POAF by a potent antiplatelet combination.

3.
bioRxiv ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39026723

RESUMO

F luorogenic ap tamers (FAPs) have become an increasingly important tool in cellular sensing and pathogen diagnostics. However, fine-tuning FAPs for enhanced performance remains challenging even with the structural details provided by X-ray crystallography. Here we present a novel approach to optimize a DNA-based FAP (D-FAP), Lettuce, on repurposed Illumina next-generation sequencing (NGS) chips. When substituting its cognate chromophore, DFHBI-1T, with TO1-biotin, Lettuce not only shows a red-shifted emission peak by 53 nm (from 505 to 558 nm), but also a 4-fold bulk fluorescence enhancement. After screening 8,821 Lettuce variants complexed with TO1-biotin, the C14T mutation is found to exhibit an improved apparent dissociated constant ( vs. 0.82 µM), an increased quantum yield (QY: 0.62 vs. 0.59) and an elongated fluorescence lifetime (τ: 6.00 vs. 5.77 ns), giving 45% more ensemble fluorescence than the canonical Lettuce/TO1-biotin complex. Molecular dynamic simulations further indicate that the π-π stacking interaction is key to determining the coordination structure of TO1-biotin in Lettuce. Our screening-and-simulation pipeline can effectively optimize FAPs without any prior structural knowledge of the canonical FAP/chromophore complexes, providing not only improved molecular probes for fluorescence sensing but also insights into aptamer-chromophore interactions.

4.
Medicine (Baltimore) ; 103(30): e39150, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058814

RESUMO

RATIONALE: Hyalinizing clear cell carcinoma (HCCC) of the salivary glands is a rare low-grade malignant tumor. This type of tumor is particularly uncommon in the sublingual glands. PATIENT CONCERNS: A 57-year-old female with a mass on the left side of the floor of the mouth that had been present for 2 months. The computed tomography scan of the neck revealed a nodular abnormal density shadow in the left sublingual area, measuring approximately 2.6 cm × 1.9 cm. DIAGNOSES: Primary HCCC of the sublingual gland. INTERVENTIONS: The patient underwent surgical treatment and reconstruction using a left anterolateral femoral free flap, which showed immunohistochemical positivity for CK 5/6, CK 7, CK (AE1/AE3), and Ki-67 (<5%), but negative for SMA and S-100. OUTCOMES: No recurrence was observed during the 12-month postoperative follow-up period. LESSONS: The absence of characteristic clinical manifestations makes HCCC highly susceptible to misdiagnoses. This case presents a rare instance of HCCC in the sublingual gland, providing a reference for the clinical diagnosis and treatment of the disease.


Assuntos
Adenocarcinoma de Células Claras , Neoplasias da Glândula Sublingual , Humanos , Feminino , Pessoa de Meia-Idade , Neoplasias da Glândula Sublingual/patologia , Neoplasias da Glândula Sublingual/cirurgia , Neoplasias da Glândula Sublingual/diagnóstico , Adenocarcinoma de Células Claras/cirurgia , Adenocarcinoma de Células Claras/patologia , Adenocarcinoma de Células Claras/diagnóstico , Tomografia Computadorizada por Raios X , Glândula Sublingual/patologia , Glândula Sublingual/cirurgia , Glândula Sublingual/diagnóstico por imagem
5.
Pharmacol Res ; 206: 107286, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936522

RESUMO

The Frizzleds (FZDs) receptors on the cell surface belong to the class F of G protein-coupled receptors (GPCRs) which are the major receptors of WNT protein that mediates the classical WNT signaling pathway and other non-classical pathways. Besides, the FZDs also play a core role in tissue regeneration and tumor occurrence. With the structure and mechanism of FZDs activation becoming clearer, a series of FZDs modulators (inhibitors and agonists) have been developed, with the hope of bringing benefits to the treatment of cancer and degenerative diseases. Most of the FZDs inhibitors (small molecules, antibodies or designed protein inhibitors) block WNT signaling through binding to the cysteine-rich domain (CRD) of FZDs. Several small molecules impede FZDs activation by targeting to the third intracellular domain or the transmembrane domain of FZDs. However, three small molecules (FZM1.8, SAG1.3 and purmorphamine) activate the FZDs through direct interaction with the transmembrane domain. Another type of FZDs agonists are bivalent or tetravalent antibodies which activate the WNT signaling via inducing FZD-LRP5/6 heterodimerization. In this article, we reviewed the FZDs modulators reported in recent years, summarized the critical molecules' discovery processes and the elucidated relevant structural and pharmacological mechanisms. We believe the summaried molecular mechanisms of the relevant modulators could provide important guidance and reference for the future development of FZD modulators.


Assuntos
Receptores Frizzled , Humanos , Receptores Frizzled/metabolismo , Receptores Frizzled/antagonistas & inibidores , Animais , Via de Sinalização Wnt/efeitos dos fármacos , Desenvolvimento de Medicamentos
6.
Sci China Life Sci ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38874710

RESUMO

High myopia (HM) is the primary cause of blindness, with the microstructural organization and composition of collagenous fibers in the cornea and sclera playing a crucial role in the biomechanical behavior of these tissues. In a previously reported myopic linkage region, MYP5 (17q21-22), a potential candidate gene, LRRC46 (c.C235T, p.Q79X), was identified in a large Han Chinese pedigree. LRRC46 is expressed in various eye tissues in humans and mice, including the retina, cornea, and sclera. In subsequent cell experiments, the mutation (c.C235T) decreased the expression of LRRC46 protein in human corneal epithelial cells (HCE-T). Further investigation revealed that Lrrc46-/- mice (KO) exhibited a classical myopia phenotype. The thickness of the cornea and sclera in KO mice became thinner and more pronounced with age, the activity of limbal stem cells decreased, and microstructural changes were observed in the fibroblasts of the sclera and cornea. We performed RNA-seq on scleral and corneal tissues of KO and normal control wild-type (WT) mice, which indicated a significant downregulation of the collagen synthesis-related pathway (extracellular matrix, ECM) in KO mice. Subsequent in vitro studies further indicated that LRRC46, a member of the important LRR protein family, primarily affected the formation of collagens. This study suggested that LRRC46 is a novel candidate gene for HM, influencing collagen protein VIII (Col8a1) formation in the eye and gradually altering the biomechanical structure of the cornea and sclera, thereby promoting the occurrence and development of HM.

7.
Clin Transl Sci ; 17(6): e13862, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877696

RESUMO

This cohort study aims to assess the connection between cytochrome P450 family 2 subfamily C member 19 (CYP2C19) genotyping, platelet aggregability following oral clopidogrel administration, and the occurrence of postoperative atrial fibrillation (POAF) after off-pump coronary artery bypass graft (CABG) surgery. From May 2017 to November 2022, a total of 258 patients undergoing elective first-time CABG surgery, receiving 100 mg/day oral aspirin and 75 mg/day oral clopidogrel postoperatively, was included for analysis. These patients were categorized based on CYP2C19 genotyping. Platelet aggregability was assessed serially using multiple-electrode aggregometry before CABG, 1 and 5 days after the procedure, and before discharge. The incidences of POAF were compared using the log-rank test for cumulative risk. CYP2C19 genotyping led to categorization into CYP2C19*1*1 (WT group, n = 123) and CYP2C19*2 or *3 (LOF group, n = 135). Baseline characteristics and operative data showed no significant differences between the two groups. The incidence of POAF after CABG was 42.2% in the LOF group, contrasting with 22.8% in the WT group (hazard risk [HR]: 2.061; 95% confidence interval [CI]: 1.347, 3.153; p = 0.0013). Adenosine diphosphate-stimulated platelet aggregation was notably higher in the LOF group compared to the WT group 5 days after CABG (30.4% ± 6.5% vs. 17.9% ± 4.1%, p < 0.001), remaining a similar higher level at hospital discharge (25.6% ± 6.1% vs. 12.2% ± 3.5%, p < 0.001). The presence of CYP2C19 LOF was linked to a higher incidence of POAF and relatively elevated platelet aggregation after CABG surgery under the same oral clopidogrel regimen.


Assuntos
Fibrilação Atrial , Clopidogrel , Ponte de Artéria Coronária , Citocromo P-450 CYP2C19 , Genótipo , Inibidores da Agregação Plaquetária , Agregação Plaquetária , Complicações Pós-Operatórias , Humanos , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Fibrilação Atrial/etiologia , Fibrilação Atrial/genética , Fibrilação Atrial/epidemiologia , Masculino , Feminino , Idoso , Ponte de Artéria Coronária/efeitos adversos , Pessoa de Meia-Idade , Clopidogrel/administração & dosagem , Clopidogrel/efeitos adversos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores da Agregação Plaquetária/efeitos adversos , Agregação Plaquetária/efeitos dos fármacos , Incidência , Aspirina/administração & dosagem , Aspirina/efeitos adversos
9.
Invest Ophthalmol Vis Sci ; 65(4): 1, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558095

RESUMO

Purpose: The purpose of this study is to report five novel FZD4 mutations identified in familial exudative vitreoretinopathy (FEVR) and to analyze and summarize the pathogenic mechanisms of 34 of 96 reported missense mutations in FZD4. Methods: Five probands diagnosed with FEVR and their family members were enrolled in the study. Ocular examinations and targeted gene panel sequencing were conducted on all participants. Plasmids, each carrying 29 previously reported FZD4 missense mutations and five novel mutations, were constructed based on the selection of mutations from each domain of FZD4. These plasmids were used to investigate the effects of mutations on protein expression levels, Norrin/ß-catenin activation capacity, membrane localization, norrin binding ability, and DVL2 recruitment ability in HEK293T, HEK293STF, and HeLa cells. Results: All five novel mutations (S91F, V103E, C145S, E160K, C377F) responsible for FEVR were found to compromise Norrin/ß-catenin activation of FZD4 protein. After reviewing a total of 34 reported missense mutations, we categorized all mutations based on their functional changes: signal peptide mutations, cysteine mutations affecting disulfide bonds, extracellular domain mutations influencing norrin binding, transmembrane domain (TM) 1 and TM7 mutations impacting membrane localization, and intracellular domain mutations affecting DVL2 recruitment. Conclusions: We expanded the spectrum of FZD4 mutations relevant to FEVR and experimentally demonstrated that missense mutations in FZD4 can be classified into five categories based on different functional changes.


Assuntos
Doenças Retinianas , beta Catenina , Humanos , Vitreorretinopatias Exsudativas Familiares , beta Catenina/metabolismo , Doenças Retinianas/patologia , Células HEK293 , Células HeLa , Receptores Frizzled/genética , Mutação , Linhagem , Análise Mutacional de DNA , Tetraspaninas/genética
10.
Invest Ophthalmol Vis Sci ; 65(3): 31, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38517429

RESUMO

Purpose: This study aimed to investigate the impact of 21 NDP mutations located at the dimer interface, focusing on their potential effects on protein assembly, secretion efficiency, and activation of the Norrin/ß-catenin signaling pathway. Methods: The expression level, secretion efficiency, and protein assembly of mutations were analyzed using Western blot. The Norrin/ß-catenin signaling pathway activation ability after overexpression of mutants or supernatant incubation of mutant proteins was tested in HEK293STF cells. The mutant norrin and wild-type (WT) FZD4 were overexpressed in HeLa cells to observe their co-localization. Immunofluorescence staining was conducted in HeLa cells to analyze the subcellular localization of Norrin and the Retention Using Selective Hook (RUSH) assay was used to dynamically observe the secretion process of WT and mutant Norrin. Results: Four mutants (A63S, E66K, H68P, and L103Q) exhibited no significant differences from WT in all evaluations. The other 17 mutants presented abnormalities, including inadequate protein assembly, reduced secretion, inability to bind to FZD4 on the cell membrane, and decreased capacity to activate Norrin/ß-catenin signaling pathway. The RUSH assay revealed the delay in endoplasmic reticulum (ER) exit and impairment of Golgi transport. Conclusions: Mutations at the Norrin dimer interface may lead to abnormal protein assembly, inability to bind to FZD4, and decreased secretion, thus contributing to compromised Norrin/ß-catenin signaling. Our results shed light on the pathogenic mechanisms behind a significant proportion of NDP gene mutations in familial exudative vitreoretinopathy (FEVR) or Norrie disease.


Assuntos
Proteínas do Olho , Receptores Frizzled , Doenças Retinianas , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Receptores Frizzled/genética , Células HeLa , Mutação , Doenças Retinianas/genética , Proteínas do Tecido Nervoso/genética
11.
Nat Commun ; 15(1): 2051, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448408

RESUMO

Transmembrane channels play a vital role in regulating the permeation process, and have inspired recent development of biomimetic channels. Herein, we report a class of artificial biomimetic nanochannels based on DNAzyme-functionalized glass nanopipettes to realize delicate control of channel permeability, whereby the surface wettability and charge can be tuned by metal ions and DNAzyme-substrates, allowing reversible conversion between different permeability states. We demonstrate that the nanochannels can be reversibly switched between four different permeability states showing distinct permeability to various functional molecules. By embedding the artificial nanochannels into the plasma membrane of single living cells, we achieve selective transport of dye molecules across the cell membrane. Finally, we report on the advanced functions including gene silencing of miR-21 in single cancer cells and selective transport of Ca2+ into single PC-12 cells. In this work, we provide a versatile tool for the design of rectifying artificial nanochannels with on-demand functions.


Assuntos
DNA Catalítico , Membrana Celular , Biomimética , Inativação Gênica , Permeabilidade
13.
Nat Biotechnol ; 42(4): 608-616, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37217750

RESUMO

Little is known about the biological roles of glycosylated RNAs (glycoRNAs), a recently discovered class of glycosylated molecules, because of a lack of visualization methods. We report sialic acid aptamer and RNA in situ hybridization-mediated proximity ligation assay (ARPLA) to visualize glycoRNAs in single cells with high sensitivity and selectivity. The signal output of ARPLA occurs only when dual recognition of a glycan and an RNA triggers in situ ligation, followed by rolling circle amplification of a complementary DNA, which generates a fluorescent signal by binding fluorophore-labeled oligonucleotides. Using ARPLA, we detect spatial distributions of glycoRNAs on the cell surface and their colocalization with lipid rafts as well as the intracellular trafficking of glycoRNAs through SNARE protein-mediated secretory exocytosis. Studies in breast cell lines suggest that surface glycoRNA is inversely associated with tumor malignancy and metastasis. Investigation of the relationship between glycoRNAs and monocyte-endothelial cell interactions suggests that glycoRNAs may mediate cell-cell interactions during the immune response.


Assuntos
Oligonucleotídeos , RNA , Linhagem Celular
14.
Int J Biol Macromol ; 258(Pt 1): 128570, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096938

RESUMO

The ß-catenin has two intrinsically disordered regions in both C- and N-terminal domains that trigger the formation of phase-separated condensates. Variants in its C-terminus are associated with familial exudative vitreoretinopathy (FEVR), yet the pathogenesis and the role of these variants in inducing abnormal condensates, are unclear. In this study, we identified a novel heterozygous frameshift variant, c.2104-2105insCC (p.Gln703ProfsTer33), in CTNNB1 from a FEVR-affected family. This variant encodes an unstable truncated protein that was unable to activate Wnt signal transduction, which could be rescued by the inhibition of proteasome or phosphorylation. Further functional experiments revealed the propensity of the Gln703ProfsTer33 variant to form cytoplasmic condensates, exhibiting a lower turnover rate after fluorescent bleaching due to enhanced interaction with AXIN1. LiCl, which specifically blocks GSK3ß-mediated phosphorylation, restored signal transduction, cell proliferation, and junctional integrity in primary human retinal microvascular endothelial cells over-expressed with Gln703ProfsTer33. Finally, experiments on two reported FEVR-associated mutations in the C-terminal domain of ß-catenin exhibited several functional defects similar to the Gln703ProfsTer33. Together, our findings unravel that the C-terminal region of ß-catenin is pivotal for the regulation of AXIN1/ß-catenin interaction, acting as a switch to mediate nucleic and cytosolic condensates formation that is implicated in the pathogenesis of FEVR.


Assuntos
Vitreorretinopatias Exsudativas Familiares , beta Catenina , Humanos , Proteína Axina/genética , beta Catenina/genética , beta Catenina/metabolismo , Análise Mutacional de DNA , Células Endoteliais/metabolismo , Vitreorretinopatias Exsudativas Familiares/genética , Mutação , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina/genética , Mutação da Fase de Leitura
15.
Redox Biol ; 69: 103002, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142583

RESUMO

Lipid peroxidation and redox imbalance are hallmarks of ferroptosis, an iron-dependent form of cell death. Growing evidence suggests that dysregulation in glycolipid metabolism and iron homeostasis substantially contribute to the development of hepatocellular carcinoma (HCC). However, there is still a lack of comprehensive understanding regarding the specific transcription factors that are capable of coordinating glycolipid and redox homeostasis to initiate the onset of ferroptosis. We discovered that overexpression of SOX8 leads to impaired mitochondria integrate, increased oxidative stress, and enhanced lipid peroxidation. These effects can be attributed to the inhibitory impact of SOX8 on de novo lipogenesis, glycolysis, the tricarboxylic acid cycle (TCA), and the pentose phosphate pathway (PPP). Additionally, upregulation of SOX8 results in reduced synthesis of NADPH, disturbance of redox homeostasis, disruption of mitochondrial structure, and impairment of the electron transport chain. Furthermore, the overexpression of SOX8 enhances the process of ferroptosis by upregulating the expression of genes associated with ferroptosis and elevating intracellular levels of ferrous ion. Importantly, the overexpressing of SOX8 has been observed to inhibit the proliferation of HCC in immunodeficient animal models. In conclusion, the findings suggest that SOX8 has the ability to alter glycolipid and iron metabolism of HCC cells, hence triggering the process of ferroptosis. The results of our study present a novel strategy for targeting ferroptosis in the therapy of HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , Ferroptose/genética , Neoplasias Hepáticas/genética , Glicolipídeos , Ferro
16.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762645

RESUMO

Surface staining has emerged as a rapid technique for applying external stains to trace cellular identities in diverse populations. In this study, we developed a distinctive aptamer with selective binding to cell surface nucleolin (NCL), bypassing cytoplasmic internalization. Conjugation of the aptamer with a FAM group facilitated NCL visualization on live cell surfaces with laser confocal microscopy. To validate the aptamer-NCL interaction, we employed various methods, including the surface plasmon resonance, IHC-based flow cytometry, and electrophoretic mobility shift assay. The G-quadruplex formations created by aptamers were confirmed with a nuclear magnetic resonance and an electrophoretic mobility shift assay utilizing BG4, a G-quadruplex-specific antibody. Furthermore, the aptamer exhibited discriminatory potential in distinguishing between cancerous and normal cells using flow cytometry. Notably, it functioned as a dynamic probe, allowing real-time monitoring of heightened NCL expression triggered by a respiratory syncytial virus (RSV) on normal cell surfaces. This effect was subsequently counteracted with dsRNA transfection and suppressed the NCL expression; thus, emphasizing the dynamic attributes of the probe. These collective findings highlight the robust versatility of our aptamer as a powerful tool for imaging cell surfaces, holding promising implications for cancer cell identification and the detection of RSV infections.

17.
Genes Dis ; 10(6): 2540-2556, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37554187

RESUMO

The retinal pigment epithelium (RPE) and choroid are located behind the human retina and have multiple functions in the human visual system. Knowledge of the RPE and choroid cells and their gene expression profiles are fundamental for understanding retinal disease mechanisms and therapeutic strategies. Here, we sequenced the RNA of about 0.3 million single cells from human RPE and choroids across two regions and seven ages, revealing regional and age differences within the human RPE and choroid. Cell-cell interactions highlight the broad connectivity networks between the RPE and different choroid cell types. Moreover, the transcription factors and their target genes change during aging. The coding of somatic variations increases during aging in the human RPE and choroid at the single-cell level. Moreover, we identified ELN as a candidate for improving RPE degeneration and choroidal structure during aging. The mapping of the molecular architecture of the human RPE and choroid improves our understanding of the human vision support system and offers potential insights into the intervention targets for retinal diseases.

18.
Genes Dis ; 10(6): 2572-2585, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37554197

RESUMO

Endoplasmic reticulum (ER) membrane protein complex (EMC) is required for the co-translational insertion of newly synthesized multi-transmembrane proteins. Compromised EMC function in different cell types has been implicated in multiple diseases. Using inducible genetic mouse models, we revealed defects in retinal vascularization upon endothelial cell (EC) specific deletion of Emc1, the largest subunit of EMC. Loss of Emc1 in ECs led to reduced vascular progression and vascular density, diminished tip cell sprouts, and vascular leakage. We then performed an unbiased transcriptomic analysis on human retinal microvascular endothelial cells (HRECs) and revealed a pivotal role of EMC1 in the ß-catenin signaling pathway. Further in-vitro and in-vivo experiments proved that loss of EMC1 led to compromised ß-catenin signaling activity through reduced expression of Wnt receptor FZD4, which could be restored by lithium chloride (LiCl) treatment. Driven by these findings, we screened genomic DNA samples from familial exudative vitreoretinopathy (FEVR) patients and identified one heterozygous variant in EMC1 that co-segregated with FEVR phenotype in the family. In-vitro expression experiments revealed that this variant allele failed to facilitate the expression of FZD4 on the plasma membrane and activate the ß-catenin signaling pathway, which might be a main cause of FEVR. In conclusion, our findings reveal that variants in EMC1 gene cause compromised ß-catenin signaling activity, which may be associated with the pathogenesis of FEVR.

19.
Angew Chem Int Ed Engl ; 62(37): e202308086, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37548922

RESUMO

DNA-based probes have gained significant attention as versatile tools for biochemical analysis, benefiting from their programmability and biocompatibility. However, most existing DNA-based probes rely on fluorescence as the signal output, which can be problematic due to issues like autofluorescence and scattering when applied in complex biological materials such as living cells or tissues. Herein, we report the development of bioluminescent nucleic acid (bioLUNA) sensors that offer laser excitation-independent and ratiometric imaging of the target in vivo. The system is based on computational modelling and mutagenesis investigations of a genetic fusion between circular permutated Nano-luciferase (NLuc) and HaloTag, enabling the conjugation of the protein with a DNAzyme. In the presence of Zn2+ , the DNAzyme sensor releases the fluorophore-labelled strand, leading to a reduction in bioluminescent resonance energy transfer (BRET) between the luciferase and fluorophore. Consequently, this process induces ratiometric changes in the bioluminescent signal. We demonstrated that this bioLUNA sensor enabled imaging of both exogenous Zn2+ in vivo and endogenous Zn2+ efflux in normal epithelial prostate and prostate tumors. This work expands the DNAzyme sensors to using bioluminescence and thus has enriched the toolbox of nucleic acid sensors for a broad range of biomedical applications.


Assuntos
DNA Catalítico , Masculino , Humanos , DNA Catalítico/metabolismo , Metais/análise , Íons/metabolismo , Luciferases/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos
20.
Front Endocrinol (Lausanne) ; 14: 1119599, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424873

RESUMO

Purpose: Menopause is a risk factor for pelvic organ prolapse (POP) and is frequently associated with diminished vaginal wall support. To uncover relevant molecular mechanisms and provide potential therapeutic targets, we evaluated changes in the transcriptome and metabolome of the vaginal wall in ovariectomized rats to identify important molecular changes. Methods: Sixteen adult female Sprague-Dawley rats were randomly assigned to either the control or menopause group. Seven months after the operation, hematoxylin and eosin (H&E) staining and Masson trichrome staining were used to observe changes in the rat vaginal wall structure. Differentially expressed genes (DEGs) and metabolites (DEMs) in the vaginal wall were detected by RNA-sequencing and LC-MS, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DEGs and DEMs were performed. Results: We verified that long-term menopause causes vaginal wall injury by H&E and Masson trichrome staining. From the multiomics analyses, 20,669 genes and 2193 metabolites were identified. Compared with the control group, 3255 DEGs were found in the vaginal wall of long-term menopausal rats. Bioinformatics analysis showed that the DEGs were mainly enriched in mechanistic pathways, including cell-cell junction, extracellular matrix, muscle tissue developments, the PI3K-Akt signaling pathway, the MAPK signaling pathway, tight junctions and the Wnt signaling pathway. Additionally, 313 DEMs were found, and they consisted mostly of amino acids and their metabolites. DEMs were also enriched in mechanistic pathways, such as glycine, serine and threonine metabolism, glycerophospholipid metabolism, gap junctions and ferroptosis. Coexpression analysis of DEGs and DEMs revealed that biosynthesis of amino acids (isocitric acid and PKM) and glycerophospholipid metabolism (1-(9Z-hexadecenoyl)-sn-glycero-3-phosphocholine and PGS1) are critical metabolic pathways, suggesting that POP induced by menopause may be associated with the regulation of these processes. Conclusion: The findings showed that long-term menopause greatly exacerbated vaginal wall support injury by decreasing the biosynthesis of amino acids and interfering with glycerophospholipid metabolism, which may result in POP. This study not only clarified that long-term menopause exacerbates damage to the vaginal wall but also provided insight into the potential molecular mechanisms by which long-term menopause induces POP.


Assuntos
Menopausa , Fosfatidilinositol 3-Quinases , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Aminoácidos , Glicerofosfolipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...