Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36676278

RESUMO

Mesocarbon microbead-silicon carbide (MCMB-SiC) composites were prepared by hot-press sintering (2100 °C/40 MPa/1 h) with two different graphitized MCMBs as the second phase, which exhibited good self-lubricating properties. The effects of the graphitization degree of the MCMBs on the microstructure and properties of the composites were investigated contrastively. The results showed that the composites that added raw MCMBs with a low degree of graphitization had excellent self-sintering properties, higher densities, and better mechanical properties; by comparison, the composites that added mature MCMBs with a high degree of graphitization, which has regular and orderly lamellar structures, not only had good mechanical properties but also exhibited a lower and more stable dry friction coefficient (0.35), despite the higher wear rate (2.66 × 10-6 mm3·N-1·m-1). Large amounts of mature MCMBs were peeled off during the friction process to form a uniform and flat graphite lubricating film, which was the main reason for reducing the dry friction coefficient of the self-lubricating composites and making the friction coefficient more stable.

2.
Materials (Basel) ; 13(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114557

RESUMO

Silicon carbide (SiC) ceramics with Y2O3-Er2O3 as sintering additives were prepared by spark plasma sintering (SPS). The effects of sintering temperatures and Y2O3-Er2O3 contents on the microstructure, thermal conductivity, electrical, and mechanical properties were investigated. The increasing of sintering temperatures promoted the densification of SiC ceramics, thus increasing the thermal conductivity and electrical resistivity. With the increase of the sintering additive contents, the electrical resistivity increased due to the formation of the electrical insulating network; and the thermal conductivity first increased and then decreased, which was related to the content and distribution of the secondary phase among the SiC grains. The SiC ceramics sintered at 2000 °C with 9 wt.% Y2O3-Er2O3 exhibited higher electrical resistivity and thermal conductivity, which were 4.28 × 109 Ω·cm and 96.68 W/m·K, respectively.

3.
Opt Express ; 28(13): 19085-19096, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672193

RESUMO

A laser-diode-based white lighting module is fabricated via spectral component optimization, which can achieve both high luminous flux and high color rendering index (CRI). In this work, the laser module is constituted by blue laser diodes (LDs) which excite YAG:Ce-Al2O3 and red LDs that can compensate for the lack of red spectrum to improve the CRI of the light source. To fulfill the requirements of flexibility and compactness of light source, the blue and red LDs beams are combined by optical fiber coupling. A simulation framework is employed to optimize the dominant wavelength of red LDs and the power ratio of red to blue LDs. According to the results of the integrating sphere, high luminous flux of 1102 lm and high CRI of 77.8 are achieved simultaneously, which is consistent with the simulation results. The tunable correlated color temperature (CCT) varying from 4000 K to 2800 K and high angular color uniformity (ACU) can be obtained.

4.
Materials (Basel) ; 12(19)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557862

RESUMO

Mesocarbon microbead-silicon carbide (MCMB-SiC) composites with 0-30 wt % MCMBs were prepared by pressureless sintering (PLS) method at 2200 °C in Ar. The microstructure and tribological properties of the prepared composites were investigated. The results show that there was a finer grain size of SiC with the increase in MCMB content because MCMBs hinder the growth of SiC grains. The hardness of the composites decreased with increasing MCMB content, whereas the fracture toughness fluctuated showing a complex trend. The tribological properties of the composites under dry friction conditions were evaluated using the pin-on-disk method against a SiC counterpart. We found that the tribological properties of the samples were influenced by the oxide film or lubricating film that formed during the wear process on wear surfaces. Different wear mechanisms were found to be associated with differing MCMB contents.

5.
J Mater Sci Mater Med ; 16(2): 161-5, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15744605

RESUMO

Porous hydroxyapatite (HAp) ceramics with controlled pore characteristics were fabricated using slip casting method by mixing PMMA with HAp powder. The optimum conditions of HAp slip for slip casting was achieved by employing various experimental techniques, zeta potential and sedimentation, as a function of pH of the slips in the pH range of 4-12. HAp suspensions displayed an absolute maximum in zeta potential values and a minimum in sedimentation height at pH 11.5. The optimal amount of dispersant for the HAp suspensions was found at 1.0 wt% according to the viscosity of 25 vol% HAp slurry. The rheological behaviour of HAp slurry displays a shear-thinning behavior without thixotropy, which is needed in slip casting processing. The pore characteristics of sintered porous hydroxyapatite bioceramics can be controlled by added PMMA particle size and volume. The obtained ceramics exhibit higher strength than those obtained by dry pressing.


Assuntos
Materiais Biocompatíveis/química , Cristalização/métodos , Durapatita/análise , Durapatita/química , Polimetil Metacrilato/química , Materiais Biocompatíveis/análise , Cerâmica/análise , Cerâmica/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Teste de Materiais , Tamanho da Partícula , Porosidade , Pós , Propriedades de Superfície , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...