Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(6): 144, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809285

RESUMO

KEY MESSAGE: A wild melon reference genome elucidates the genomic basis of fruit acidity domestication. Structural variants (SVs) have been reported to impose major effects on agronomic traits, representing a significant contributor to crop domestication. However, the landscape of SVs between wild and cultivated melons is elusive and how SVs have contributed to melon domestication remains largely unexplored. Here, we report a 379-Mb chromosome-scale genome of a wild progenitor melon accession "P84", with a contig N50 of 14.9 Mb. Genome comparison identifies 10,589 SVs between P84 and four cultivated melons with 6937 not characterized in previously analysis of 25 melon genome sequences. Furthermore, the population-scale genotyping of these SVs was determined in 1175 accessions, and 18 GWAS signals including fruit acidity, fruit length, fruit weight, fruit color and sex determination were detected. Based on these genotyped SVs, we identified 3317 highly diverged SVs between wild and cultivated melons, which could be the potential SVs associated with domestication-related traits. Furthermore, we identify novel SVs affecting fruit acidity and proposed the diverged evolutionary trajectories of CmPH, a key regulator of melon fruit acidity, during domestication and selection of different populations. These results will offer valuable resources for genomic studies and genetic improvement in melon.


Assuntos
Cucurbitaceae , Domesticação , Frutas , Genoma de Planta , Cucurbitaceae/genética , Cucurbitaceae/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Fenótipo , Genótipo , Locos de Características Quantitativas , Variação Estrutural do Genoma , Genes de Plantas
2.
Nat Commun ; 13(1): 682, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115520

RESUMO

Structural variants (SVs) represent a major source of genetic diversity and are related to numerous agronomic traits and evolutionary events; however, their comprehensive identification and characterization in cucumber (Cucumis sativus L.) have been hindered by the lack of a high-quality pan-genome. Here, we report a graph-based cucumber pan-genome by analyzing twelve chromosome-scale genome assemblies. Genotyping of seven large chromosomal rearrangements based on the pan-genome provides useful information for use of wild accessions in breeding and genetic studies. A total of ~4.3 million genetic variants including 56,214 SVs are identified leveraging the chromosome-level assemblies. The pan-genome graph integrating both variant information and reference genome sequences aids the identification of SVs associated with agronomic traits, including warty fruits, flowering times and root growth, and enhances the understanding of cucumber trait evolution. The graph-based cucumber pan-genome and the identified genetic variants provide rich resources for future biological research and genomics-assisted breeding.


Assuntos
Cucumis sativus/genética , Domesticação , Variação Genética , Genoma de Planta/genética , Genômica/métodos , Locos de Características Quantitativas/genética , Cromossomos de Plantas/genética , Cucumis sativus/classificação , Cucumis sativus/crescimento & desenvolvimento , DNA de Plantas/química , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla/métodos , Genótipo , Mutação INDEL , Filogenia , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA/métodos , Especificidade da Espécie , Sintenia
3.
Sci Rep ; 10(1): 22205, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335184

RESUMO

Quantitative real-time PCR (qRT-PCR) is commonly used to measure gene expression to further explore gene function, while suitable reference genes must be stably expressed under different experimental conditions to obtain accurate and reproducible data for relative quantification. Taxol or paclitaxel is an important anticancer compound mainly identified in Taxus spp. The molecular mechanism of the regulation of taxol biosynthesis is current research goal. However, in the case of Taxus spp., few reports were published on screening suitable reference genes as internal controls for qRT-PCR. Here, eight reference genes were selected as candidate reference genes for further study. Common statistical algorithms geNorm, NormFinder, BestKeeper, ΔCt, and RefFinder were used to analyze the data from samples collected from a cell line of Taxus × media under various experimental conditions and from tissues of Taxus chinensis var. mairei. The expression patterns of TcMYC under salicylic acid treatment differed significantly, with the best and worst reference genes in the cell line. This study screened out suitable reference genes (GAPDH1 and SAND) under different treatments and tissues for the accurate and reliable normalization of the qRT-PCR expression data of Taxus spp. At the same time, this study will aid future research on taxol biosynthesis-related genes expression in Taxus spp., and can also be directly used to other related species.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Padrões de Referência , Taxus/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Reação em Cadeia da Polimerase em Tempo Real , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...