Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; : e0083824, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904409

RESUMO

Precursor supply plays a significant role in the production of secondary metabolites. In Streptomyces bacteria, propionyl-, malonyl-, and methylmalonyl-CoA are the most common precursors used for polyketide biosynthesis. Although propionyl-CoA synthetases participate in the propionate assimilation pathway and directly convert propionate into propionyl-CoA, malonyl- and methylmalonyl-CoA cannot be formed using common acyl-CoA synthetases. Therefore, both acetyl- and propionyl-CoA carboxylation, catalyzed by acyl-CoA carboxylases, should be considered when engineering a microorganism chassis to increase polyketide production. In this study, we identified a transcriptional regulator of the TetR family, BkdR, in Streptomyces albus B4, which binds directly to the promoter region of the neighboring pccAB operon. This operon encodes acetyl/propionyl-CoA carboxylase and negatively regulates its transcription. In addition to acetate and propionate, the binding of BkdR to pccAB is disrupted by acetyl- and propionyl-CoA ligands. We identified a 16-nucleotide palindromic BkdR-binding motif (GTTAg/CGGTCg/TTAAC) in the intergenic region between pccAB and bkdR. When bkdR was deleted, we found an enhanced supply of malonyl- and methylmalonyl-CoA precursors in S. albus B4. In this study, spinosad production was detected in the recombinant strain after introducing the entire artificial biosynthesized gene cluster into S. albus B4. When supplemented with propionate to provide propionyl-CoA, the novel bkdR-deleted strain produced 29.4% more spinosad than the initial strain in trypticase soy broth (TSB) medium. IMPORTANCE: In this study, we describe a pccAB operon involved in short-chain acyl-CoA carboxylation in S. albus B4 chassis. The TetR family regulator, BkdR, represses this operon. Our results show that BkdR regulates the precursor supply needed for heterologous spinosad biosynthesis by controlling acetyl- and propionyl-CoA assimilation. The deletion of the BkdR-encoding gene exerts an increase in heterologous spinosad yield. Our research reveals a regulatory mechanism in short-chain acyl-CoA metabolism and suggests new possibilities for S. albus chassis engineering to enhance heterologous polyketide yield.

2.
Nat Commun ; 15(1): 3825, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714645

RESUMO

c-di-AMP is an essential and widespread nucleotide second messenger in bacterial signaling. For most c-di-AMP synthesizing organisms, c-di-AMP homeostasis and the molecular mechanisms pertaining to its signal transduction are of great concern. Here we show that c-di-AMP binds the N-acetylglucosamine (GlcNAc)-sensing regulator DasR, indicating a direct link between c-di-AMP and GlcNAc signaling. Beyond its foundational role in cell-surface structure, GlcNAc is attractive as a major nutrient and messenger molecule regulating multiple cellular processes from bacteria to humans. We show that increased c-di-AMP levels allosterically activate DasR as a master repressor of GlcNAc utilization, causing the shutdown of the DasR-mediated GlcNAc signaling cascade and leading to a consistent enhancement in the developmental transition and antibiotic production in Saccharopolyspora erythraea. The expression of disA, encoding diadenylate cyclase, is directly repressed by the regulator DasR in response to GlcNAc signaling, thus forming a self-sustaining transcriptional feedback loop for c-di-AMP synthesis. These findings shed light on the allosteric regulation by c-di-AMP, which appears to play a prominent role in global signal integration and c-di-AMP homeostasis in bacteria and is likely widespread in streptomycetes that produce c-di-AMP.


Assuntos
Acetilglucosamina , Proteínas de Bactérias , Fosfatos de Dinucleosídeos , Regulação Bacteriana da Expressão Gênica , Saccharopolyspora , Transdução de Sinais , Acetilglucosamina/metabolismo , Regulação Alostérica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fosfatos de Dinucleosídeos/metabolismo , Saccharopolyspora/metabolismo , Saccharopolyspora/genética
3.
Appl Microbiol Biotechnol ; 108(1): 333, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739270

RESUMO

Currently, there are many different therapies available for inflammatory bowel disease (IBD), including engineered live bacterial therapeutics. However, most of these studies focus on producing a single therapeutic drug using individual bacteria, which may cause inefficacy. The use of dual drugs can enhance therapeutic effects. However, expressing multiple therapeutic drugs in one bacterial chassis increases the burden on the bacterium and hinders good secretion and expression. Therefore, a dual-bacterial, dual-drug expression system allows for the introduction of two probiotic chassis and enhances both therapeutic and probiotic effects. In this study, we constructed a dual bacterial system to simultaneously neutralize pro-inflammatory factors and enhance the anti-inflammatory pathway. These bacteria for therapy consist of Escherichia coli Nissle 1917 that expressed and secreted anti-TNF-α nanobody and IL-10, respectively. The oral administration of genetically engineered bacteria led to a decrease in inflammatory cell infiltration in colon and a reduction in the levels of pro-inflammatory cytokines. Additionally, the administration of engineered bacteria did not markedly aggravate gut fibrosis and had a moderating effect on intestinal microbes. This system proposes a dual-engineered bacterial drug combination treatment therapy for inflammatory bowel disease, which provides a new approach to intervene and treat IBD. KEY POINTS: • The paper discusses the effects of using dual engineered bacteria on IBD • Prospects of engineered bacteria in the clinical treatment of IBD.


Assuntos
Escherichia coli , Doenças Inflamatórias Intestinais , Interleucina-10 , Probióticos , Animais , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/terapia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Camundongos , Escherichia coli/genética , Probióticos/administração & dosagem , Interleucina-10/genética , Fator de Necrose Tumoral alfa/metabolismo , Modelos Animais de Doenças , Engenharia Genética , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Colo/microbiologia , Colo/patologia , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia
4.
Anal Chem ; 96(15): 5913-5921, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563119

RESUMO

CRISPR/Cas technology has made great progress in the field of live-cell imaging beyond genome editing. However, effective and easy-to-use CRISPR systems for labeling multiple RNAs of interest are still needed. Here, we engineered a CRISPR/dCas12a system that enables the specific recognition of the target RNA under the guidance of a PAM-presenting oligonucleotide (PAMmer) to mimic the PAM recognition mechanism for DNA substrates. We demonstrated the feasibility and specificity of this system for specifically visualizing endogenous mRNA. By leveraging dCas12a-mediated precursor CRISPR RNA (pre-crRNA) processing and the orthogonality of dCas12a from different bacteria, we further demonstrated the proposed system as a simple and versatile molecular toolkit for multiplexed imaging of different types of RNA transcripts in live cells with high specificity. This programmable dCas12a system not only broadens the RNA imaging toolbox but also facilitates diverse applications for RNA manipulation.


Assuntos
Sistemas CRISPR-Cas , RNA , RNA/genética , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes/métodos , Bactérias/genética , Precursores de RNA
5.
ACS Infect Dis ; 10(5): 1654-1663, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38578697

RESUMO

MicroRNA-mediated metabolic reprogramming recently has been identified as an important strategy for Mycobacterium tuberculosis (Mtb) to evade host immune responses. However, it is unknown what role microRNA-144-3p (miR-144-3p) plays in cellular metabolism during Mtb infection. Here, we report the meaning of miR-144-3p-mediated lipid accumulation for Mtb-macrophage interplay. Mtb infection was shown to upregulate the expression of miR-144-3p in macrophages. By targeting peroxisome proliferator-activated receptor α (PPARα) and ATP-binding cassette transporter A1 (ABCA1), miR-144-3p overexpression promoted lipid accumulation and bacterial survival in Mtb-infected macrophages, while miR-144-3p inhibition had the opposite effect. Furthermore, reprogramming of host lipid metabolism by miR-144-3p suppressed autophagy in response to Mtb infection. Our findings uncover that miR-144-3p regulates host metabolism and immune responses to Mtb by targeting PPARα and ABCA1, suggesting a potential host-directed tuberculosis therapy by targeting the interface of miRNA and lipid metabolism.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Autofagia , Metabolismo dos Lipídeos , MicroRNAs , PPAR alfa , Tuberculose , Animais , Humanos , Camundongos , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mycobacterium tuberculosis/genética , PPAR alfa/metabolismo , PPAR alfa/genética , Tuberculose/microbiologia , Tuberculose/patologia
6.
Proteomics ; : e2300350, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491406

RESUMO

Lysine acylation has been extensively investigated due to its regulatory role in a diverse range of biological functions across prokaryotic and eukaryotic species. In-depth acylomic profiles have the potential to enhance comprehension of the biological implications of organisms. However, the extent of research on global acylation profiles in microorganisms is limited. Here, four lysine acylomes were conducted in Bacillus thuringiensis by using the LC-MS/MS based proteomics combined with antibody-enrichment strategies, and a total of 3438 acetylated sites, 5797 propionylated sites, 1705 succinylated sites, and 925 malonylated sites were identified. The motif analysis of these modified proteins revealed a high conservation of glutamate in acetylation and propionylation, whereas such conservation was not observed in succinylation and malonylation modifications. Besides, conservation analysis showed that homologous acylated proteins in Bacillus subtilis and Escherichia coli were connected with ribosome and aminoacyl-tRNA biosynthesis. Further biological experiments showed that lysine acylation lowered the RNA binding ability of CodY and impaired the in vivo protein activity of MetK. In conclusion, our study expanded the current understanding of the global acylation in Bacillus, and the comparative analysis demonstrated that shared acylation proteins could play important roles in regulating both metabolism and RNA transcription progression.

7.
J Agric Food Chem ; 72(8): 4217-4224, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38356383

RESUMO

Vanillic acid (VA), as a plant-derived phenolic acid compound, has widespread applications and good market prospects. However, the traditional production process cannot meet market demand. In this study, Pseudomonas putida KT2440 was used for de novo biosynthesis of VA. Multiple metabolic engineering strategies were applied to construct these P. putida-based cell factories, including the introduction of a Hs-OMTopt, engineering the cofactor S-adenosylmethionine supply pathway through the overexpression of metX and metH, reforming solubility of Hs-OMTopt, increasing a second copy of Hs-OMTopt, and the optimization of the fermentation medium. The resulting strain, XCS17, de novo biosynthesized 5.4 g/L VA from glucose in a fed-batch fermentation system; this is the highest VA production titer reported up to recently. This study showed that P. putida KT2440 is a robust platform for achieving the effective production of phenolic acids.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ácido Vanílico/metabolismo , Engenharia Metabólica , Hidroxibenzoatos/metabolismo
8.
Microbiol Spectr ; 12(4): e0409423, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38411058

RESUMO

Insulin resistance is the primary pathophysiological basis for metabolic syndrome and type 2 diabetes. Gut microbiota and microbiota-derived metabolites are pivotal in insulin resistance. However, identifying the specific microbes and key metabolites with causal roles is a challenging task, and the underlying mechanisms require further exploration. Here, we successfully constructed a model of insulin resistance in mice induced by a high-fat diet (HFD) and screened potential biomarkers associated with insulin resistance by integrating metagenomics and untargeted metabolomics. Our findings showed a significant increase in the abundance of 30 species of Alistipes in HFD mice compared to normal diet (ND) mice, while the abundance of Desulfovibrio and Candidatus Amulumruptor was significantly lower in HFD mice than in ND mice. Non-targeted metabolomics analysis identified 21 insulin resistance-associated metabolites, originating from the microbiota or co-metabolized by both the microbiota and the host. These metabolites were primarily enriched in aromatic amino acid metabolism (tryptophan metabolism, tyrosine metabolism, and phenylalanine metabolism) and arginine biosynthesis. Further analysis revealed a significant association between the three distinct genera and 21 differentiated metabolites in the HFD and ND mice. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of representative genomes from 12 species of the three distinct genera further revealed the functional potential in aromatic amino acid metabolism and arginine biosynthesis. This study lays the groundwork for future investigations into the mechanisms through which the gut microbiota and its metabolites impact insulin resistance. IMPORTANCE: In this study, we aim to identify the microbes and metabolites linked to insulin resistance, some of which have not been previously reported in insulin resistance-related studies. This adds a complementary dimension to existing research. Furthermore, we establish a correlation between alterations in the gut microbiota and metabolite levels. These findings serve as a foundation for identifying the causal bacterial species and metabolites. They also offer insights that guide further exploration into the mechanisms through which these factors influence host insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Camundongos , Dieta Hiperlipídica , Metabolômica , Biomarcadores , Aminoácidos Aromáticos , Arginina
9.
Anal Chem ; 96(6): 2610-2619, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38306188

RESUMO

Laccase, a member of the copper oxidase family, has been used as a green catalyst in the environmental and biochemical industries. However, laccase nanoenzymes are limited to materials with copper as the active site, and noncopper laccase nanoenzymes have been scarcely reported. In this study, inspired by the multiple copper active sites of natural laccase and the redox Cu2+/Cu+ electron transfer pathway, a novel nitrogen/nickel single-atom nanoenzyme (N/Ni SAE) with high laccase-like activity was prepared by inducing Ni and dopamine precipitation through a controllable water/ethanol interface reaction. Compared with that of laccase, the laccase activity simulated by N/Ni SAE exhibited excellent stability and reusability. The N/Ni SAE exhibited a higher efficiency toward the degradation of 2,4-dichlorophenol, hydroquinone, bisphenol A, and p-aminobenzene. In addition, a sensitive electrochemical biosensor was constructed by leveraging the laccase-like activity of N/Ni SAE; this sensor offered unique advantages in terms of catalytic activity, selectivity, stability, and repeatability. Its detection ranges for quercetin were 0.01-0.1 and 1.0-100 µM, and the detection limit was 3.4 nM. It was also successfully used for the quantitative detection of quercetin in fruit juices. Therefore, the single-atom biomimetic nanoenzymes prepared in this study promote the development of a new electrochemical strategy for the detection of various bioactive molecules and show great potential for practical applications.


Assuntos
Lacase , Níquel , Lacase/metabolismo , Níquel/química , Quercetina , Biomimética , Cobre
10.
J Agric Food Chem ; 72(9): 4538-4551, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377566

RESUMO

Phenolic acids are important natural bioactive compounds with varied physiological functions. They are extensively used in food, pharmaceutical, cosmetic, and other chemical industries and have attractive market prospects. Compared to plant extraction and chemical synthesis, microbial fermentation for phenolic acid production from renewable carbon sources has significant advantages. This review focuses on the structural information, physiological functions, current applications, and biosynthesis pathways of phenolic acids, especially advances in the development of metabolically engineered microbes for the production of phenolic acids. This review provides useful insights concerning phenolic acid production through metabolic engineering of microbial cell factories.


Assuntos
Hidroxibenzoatos , Engenharia Metabólica , Hidroxibenzoatos/metabolismo , Vias Biossintéticas , Alimentos
11.
Anal Chem ; 95(50): 18549-18556, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38073045

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR/Cas12a) system has exhibited great promise in the rapid and sensitive molecular diagnostics for its trans-cleavage property. However, most CRISPR/Cas system-based detection methods are designed for nucleic acids and require target preamplification to improve sensitivity and detection limits. Here, we propose a generic crRNA switch circuit-regulated CRISPR/Cas sensor for the sensitive detection of various targets. The crRNA switch is engineered and designed in a blocked state but can be activated in the presence of triggers, which are target-induced association DNA to initiate the trans-cleavage activity of Cas12a for signal reporting. Additionally, RNase H is introduced to specifically hydrolyze RNA duplexed with the DNA trigger, resulting in the regeneration of the trigger to activate more crRNA switches. Such a combination provides a generic and sensitive strategy for the effective sensing of the p53 sequence, thrombin, and adenosine triphosphate. The design is incorporated with nucleic acid nanotechnology and extensively broadens the application scope of the CRISPR technology in biosensing.


Assuntos
Técnicas Biossensoriais , RNA Guia de Sistemas CRISPR-Cas , Ribonuclease H , RNA , Sistemas CRISPR-Cas/genética , DNA
12.
J Am Chem Soc ; 145(51): 28224-28232, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38108623

RESUMO

By recombining natural cell signaling systems and further reprogramming cell functions, use of genetically engineered cells and bacteria as therapies is an innovative emerging concept. However, the inherent properties and structures of the natural signal sensing and response pathways constrain further development. We present a universal DNA-based sensing toolbox on the cell surface to endow new signal sensing abilities for cells, control cell states, and reprogram multiple cell functions. The sensing toolbox contains a triangular-prismatic-shaped DNA origami framework and a sensing core anchored inside the internal confined space to enhance the specificity and efficacy of the toolbox. As a proof of principle, the sensing toolbox uses the customizable sensing core with signal sensing switches and converters to recognize unconventional signal inputs, deliver functional components to cells, and then control cell responses, including specific tumor cell death, immune cell disinhibition and adhesion, and bacterial expression. This work expands the diversity of cell sensing signals and reprograms biological functions by constructing nanomechanical-natural hybrid cells, providing new strategies for engineering cells and bacteria in diagnosis and treatment applications.


Assuntos
DNA , Transdução de Sinais , Engenharia Genética , Bactérias/genética , Percepção de Quorum
13.
ACS Synth Biol ; 12(11): 3414-3423, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37939253

RESUMO

The emergence of genetically engineered bacteria has provided a new means for the diagnosis and treatment of diseases. However, in vivo applications of these engineered bacteria are hindered by their inefficient accumulation in areas of inflammation. In this study, we constructed an engineered Escherichia coli (E. coli) for directional migration toward tetrathionate (a biomarker of gut inflammation), which is regulated by the TtrSR two-component system (TCS) from Shewanella baltica OS195 (S. baltica). Specifically, we removed endogenous cheZ to control the motility of E. coli. Moreover, we introduced the reductase gene cluster (ttrBCA) from Salmonella enterica serotype typhimurium (S. typhimurium), a major pathogen causing gut inflammation, into E. coli to metabolize tetrathionate. The resulting strain was tested for its motility along the gradients of tetrathionate; the engineered strain exhibits tropism to tetrathionate compared with the original strain. Furthermore, the engineered E. coli could only restore its smooth swimming ability when tetrathionate existed. With these modifications enabling tetrathionate-mediated chemotactic and metabolizing activity, this strategy with therapeutic elements will provide a great potential opportunity for target treatment of various diseases by swapping the corresponding genetic circuits.


Assuntos
Escherichia coli , Oxirredutases , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredutases/genética , Salmonella typhimurium/genética , Inflamação
14.
Anal Chem ; 95(42): 15745-15754, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37842978

RESUMO

Exosomal surface glycan reveals the biological function and molecular information on the protein, especially in indicating the pathogenesis of certain diseases through monitoring of specific protein glycosylation accurately. However, in situ and nondestructive measurement techniques for certain Exosomal glycoproteins are still lacking. In this work, combined with on-chip purification, we designed a proximity ligation assay-induced rolling circle amplification (RCA) strategy for highly sensitive identification of Exosomal protein-specific glycosylation based on a couple of proximity probes to target Exosomal protein and the protein-specific glycosylation site. Benefiting from efficient separation, scalable dual-recognition, and proximity-triggered RCA amplification, the proposed strategy could convert different protein-specific glycan levels to prominent changes in absorbance signals, resulting in accurate quantification of specific glycosylated Exosomal protein. When detecting the glycosylated PD-L1 on MDA-MB-231 exosomes and glycosylated PTK7 on HepG2 exosomes, the detection limits were calculated to be as low as 1.04 × 104 and 2.759 × 103 particles/mL, respectively. In addition, we further expand the dual-recognition site to investigate the potential correlation of Exosomal glycosylation with polarization of THP-1 cells toward the tumor-suppressive M1 phenotype. Overall, this strategy provides a universal tool for multiple analyses of diverse protein-specific glycosylated exosomes, exhibiting enormous potential to explore exosome function and search for new early diagnosis markers.


Assuntos
Exossomos , Proteínas , Glicosilação , Proteínas/análise , Polissacarídeos/metabolismo , Exossomos/química
15.
Appl Environ Microbiol ; 89(10): e0068523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37732772

RESUMO

Salmonella infection significantly increases nitrate levels in the intestine, immune cells, and immune organs of the host, and it can exploit nitrate as an electron acceptor to enhance its growth. In the presence of nitrate or nitrite, NarL, a regulatory protein of the Nar two-component system, is activated and regulates a number of genes involved in nitrate metabolism. However, research on NarL at the post-translational level is limited. In this study, we demonstrate that the DNA-binding sites K188 and 192 of NarL can be acetylated by bacterial metabolite acetyl phosphate and that the degree of acetylation has a considerable influence on the regulatory function of NarL. Specifically, acetylation of NarL negatively regulates the transcription of narG, narK, and napF, which affects the utilization of nitrate in Salmonella. Besides, both cell and mouse models show that acetylated K188 and K192 result in attenuated replication in RAW 264.7 cells, as well as impaired virulence in mouse model. Together, this research identifies a novel NarL acetylation mechanism that regulates Salmonella virulence, providing a new insight and target for salmonellosis treatment.IMPORTANCESalmonella is an important intracellular pathogen that can cause limited gastroenteritis and self-limiting gastroenteritis in immunocompetent humans. Nitrate, the highest oxidation state form of nitrogen, is critical in the formation of systemic infection in Salmonella. It functions as a signaling molecule that influences Salmonella chemotaxis, in addition to acting as a reduced external electron acceptor for Salmonella anaerobic respiration. NarL is an essential regulatory protein involved in nitrate metabolism in Salmonella, and comprehending its regulatory mechanism is necessary. Previous research has linked NarL phosphorylation to the formation of its dimer, which is required for NarL to perform its regulatory functions. Our research demonstrated that acetylation also affects the regulatory function of NarL. We found that acetylation affects Salmonella pathogenicity by weakening the ability of NarL to bind to the target sequence, further refining the mechanism of the anaerobic nitrate respiration pathway.


Assuntos
Proteínas de Escherichia coli , Gastroenterite , Humanos , Animais , Camundongos , Nitratos/metabolismo , Virulência , Proteínas de Escherichia coli/genética , Proteínas de Ligação a DNA/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Acetilação , Fatores de Transcrição/genética , Salmonella/metabolismo , Regulação Bacteriana da Expressão Gênica
16.
Analyst ; 148(20): 4954-4966, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37721099

RESUMO

Exosomes are a kind of extracellular vesicles, which play a significant role in intercellular communication and molecular exchange. Cancer-derived exosomes are potential and ideal biomarkers for the early diagnosis and treatment monitoring of cancers because of their abundant biological information and contribution to the interaction between cancer cells and the tumor microenvironment. However, there are a number of drawbacks, such as low sensitivity and tedious steps, in conventional detection techniques. Furthermore, exosome quantification is not enough to accurately distinguish cancer patients from healthy individuals. Therefore, developing efficient, accurate, and inexpensive exosome surface protein analysis techniques is necessary and critical. In recent years, a considerable number of researchers have presented novel detection strategies in this field. This review summarizes the recent progress in quantitative technologies for the analysis of cancer-related exosome proteins, mainly including the detection methods based on aptamers, nanomaterials, and antibodies, discusses a roadmap for future developments, and aims to offer an innovative perspective of exosome research.


Assuntos
Exossomos , Neoplasias , Humanos , Exossomos/metabolismo , Proteínas/metabolismo , Biomarcadores/metabolismo , Neoplasias/metabolismo , Anticorpos/metabolismo , Microambiente Tumoral
17.
Bioresour Technol ; 388: 129800, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37748563

RESUMO

Dencichine, a sought-after compound in the medical industry, requires a more efficient and sustainable production method than the current plant extraction process. This study successfully remodeled the metabolic pathway of Corynebacterium glutamicum to produce dencichine from the precursors of L-2,3-diaminopropionate (L-DAP) and oxalyl-coenzyme A. Firstly, a synthetic pathway for L-DAP was established by introducing exogenous enzymes ZmaU/ZmaV. This resulted in a production of 628 mg/L by overexpressing key genes and reducing the endogenous competitive pathway. Secondly, an oxalyl-CoA synthetic pathway was created through the enzymatic conversion of glyoxylate by introducing heterologous enzymes. Finally, with the integration of the exogenous enzyme BAHD, de novo synthesis of dencichine in C. glutamicum was achieved, and production reached 31.75 mg/L within 48-hour fermentation. This achievement represents the first successful biosynthesis of dencichine in C. glutamicum, offering a promising approach for natural product through microbial fermentation.


Assuntos
Corynebacterium glutamicum , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica/métodos , Fermentação
18.
Bioresour Technol ; 385: 129421, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37392967

RESUMO

Scutellarin drugs have been recognized as a key item in the national development of essential clinical emergency drugs for treating cardiovascular and cerebrovascular diseases; therefore, the market demand for scutellarin is growing rapidly. Microbial synthesis based on synthetic biology is a promising method for industrial production of scutellarin. In this study, the highest reported scutellarin titer in the shake flask of 703.01 ± 4.83 mg/L was achieved in Yarrowia lipolytica through the systematic metabolic engineering modifications, including screening for the optimal flavone-6-hydroxylase-cytochrome P450 reductase combination SbF6H-ATR2 to enhance P450 enzyme activity, increasing the copy numbers of rate-limiting enzyme genes, overexpressing ZWF1 and GND1 to increase NADPH supply, enhancing the supply of p-coumaric acid and uridine diphosphate glucose, and introducing the heterologous gene VHb to enhance oxygen supply. This study has significant implications for the industrial production of scutellarin and other valuable flavonoids in green economies.


Assuntos
Engenharia Metabólica , Yarrowia , Engenharia Metabólica/métodos , Yarrowia/genética , Yarrowia/metabolismo
19.
Anal Chem ; 95(26): 9734-9738, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37341424

RESUMO

Monitoring and tracing of regulated hazardous chemicals is a public security issue of global concern. However, accurately recording historical exposure remains challenging. Here, we designed a Biological Sentinel System (BOSS) for in situ and long-term monitoring of hazardous chemical exposure using a chemical-induced base-editing system that activates antibiotic resistance screening, producing an obvious colorimetric signal. Exposure events can be written into an inheritable genomic DNA sequence, which can be read using gene sequencing. As a proof of concept, we demonstrated the accurate detection of cocaine and 2,4-dinitrotoluene using BOSS under simulated application scenarios. In addition, we integrated alternative biosensors to illustrate the modularity and extensibility of this monitoring platform. This work provides a promising paradigm for developing engineered microorganisms as an alternative to electronic monitors for regulated hazardous chemicals.


Assuntos
Bactérias , Substâncias Perigosas , Bactérias/genética
20.
Nucleic Acids Res ; 51(13): 6870-6882, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37283056

RESUMO

Actinobacteria are ubiquitous bacteria undergoing complex developmental transitions coinciding with antibiotic production in response to stress or nutrient starvation. This transition is mainly controlled by the interaction between the second messenger c-di-GMP and the master repressor BldD. To date, the upstream factors and the global signal networks that regulate these intriguing cell biological processes remain unknown. In Saccharopolyspora erythraea, we found that acetyl phosphate (AcP) accumulation resulting from environmental nitrogen stress participated in the regulation of BldD activity through cooperation with c-di-GMP. AcP-induced acetylation of BldD at K11 caused the BldD dimer to fall apart and dissociate from the target DNA and disrupted the signal transduction of c-di-GMP, thus governing both developmental transition and antibiotic production. Additionally, practical mutation of BldDK11R bypassing acetylation regulation could enhance the positive effect of BldD on antibiotic production. The study of AcP-dependent acetylation is usually confined to the control of enzyme activity. Our finding represents an entirely different role of the covalent modification caused by AcP, which integrated with c-di-GMP signal in modulating the activity of BldD for development and antibiotic production, coping with environmental stress. This coherent regulatory network might be widespread across actinobacteria, thus has broad implications.


Assuntos
Antibacterianos , Saccharopolyspora , Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Saccharopolyspora/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...