Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 341: 122309, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876712

RESUMO

Room temperature phosphorescence (RTP) materials with wood as framework are highly desirable due to their extended afterglow, high haze and good mechanical properties, which is highly desired in lighting materials. However, it remains challenging to obtain wood-based RTP materials that possess on-demand afterglow colors while maintaining high transparency across the entire visible spectrum. In this study, long-persistent phosphorescent transparent composite with tunable afterglow color is fabricated by infiltrating delignified wood with phosphors (including carbazole, naphthalene, and pyrene) doped polymethyl methacrylate (PMMA). Such RTP woods indicate remarkable transparency, over 70 %, and an extended afterglow duration of up to 8 s. Here, PMMA serves as rigid surrounding to suppress the non-radiative transition of phosphors to ensure phosphorescence, and to fulfill in the wood lumen to match the refractive index of cellulose for transparency. By formulating phosphors with different types and concentration ratios, transparent woods with diverse phosphorescence colors, and white emission, are successfully achieved. Furthermore, the RTP woods demonstrate dynamically tunable afterglow colors over time based on the varied phosphorescent lifetimes. Characterized by their high transparency and tunable colors, these natural wood-based RTP materials have great potentials for application in the fields of LED materials, optics, and building materials.

2.
Biomacromolecules ; 25(6): 3507-3518, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38758685

RESUMO

Iridescent cellulose nanocrystal (CNC) films with chiral nematic nanostructures exhibit great potential in optical devices, sensors, painting, and anticounterfeiting applications. CNCs can assemble into a chiral nematic liquid crystal structure by evaporation-assisted self-assembly (EISA) and vacuum-assisted self-assembly (VASA) techniques. However, there is a lack of comprehensive examinations of their structure-property correlations, which are essential for fabricating materials with unique properties. In this work, we gained insights into the optical, mechanical, and structural differences of CNC films engineered using the two techniques. In contrast to the random self-assembly at the liquid-air interface in EISA, the continuous external pressure in the VASA process forces CNCs to assemble at the filter-liquid interface. This results in fewer defects in the interfaces between tactoids and highly ordered cholesteric phases. Owing to the distinct CNC assembly behaviors, the films prepared by these two methods show great differences in the nanostructure, microstructure, and macroscopic morphology. Consequently, the highly ordered cholesteric structure gives VASA-CNC films a more uniform structural color and enhanced mechanical performance. These fundamental understandings of the relationship of structure-property nanoengineering through various assembly techniques are essential for designing and constructing high-performance chiral iridescent CNC materials.


Assuntos
Celulose , Cristais Líquidos , Nanopartículas , Celulose/química , Nanopartículas/química , Cristais Líquidos/química
3.
Sci Rep ; 14(1): 11320, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760435

RESUMO

The difference in the survival of obese patients and normal-weight/lean patients with diabetic MAFLD remains unclear. Therefore, we aimed to describe the long-term survival of individuals with diabetic MAFLD and overweight/obesity (OT2M), diabetic MAFLD with lean/normal weight (LT2M), MAFLD with overweight/obesity and without T2DM (OM), and MAFLD with lean/normal weight and without T2DM (LM). Using the NHANESIII database, participants with MAFLD were divided into four groups. Hazard ratios (HRs) and 95% confidence intervals (CIs) for all-cause, cardiovascular disease (CVD)-related, and cancer-related mortalities for different MAFLD subtypes were evaluated using Cox proportional hazards models. Of the 3539 participants, 1618 participants (42.61%) died during a mean follow-up period of 274.41 ± 2.35 months. LT2M and OT2M had higher risks of all-cause mortality (adjusted HR, 2.14; 95% CI 1.82-2.51; p < 0.0001; adjusted HR, 2.24; 95% CI 1.32-3.81; p = 0.003) and CVD-related mortality (adjusted HR, 3.25; 95% CI 1.72-6.14; p < 0.0001; adjusted HR, 3.36; 95% CI 2.52-4.47; p < 0.0001) than did OM. All-cause and CVD mortality rates in LT2M and OT2M patients were higher than those in OM patients. Patients with concurrent T2DM and MAFLD should be screened, regardless of the presence of obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Obesidade , Humanos , Masculino , Feminino , Obesidade/complicações , Obesidade/mortalidade , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/mortalidade , Adulto , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/etiologia , Hepatopatia Gordurosa não Alcoólica/mortalidade , Hepatopatia Gordurosa não Alcoólica/complicações , Modelos de Riscos Proporcionais , Idoso , Fatores de Risco
4.
Sci Rep ; 13(1): 18953, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919314

RESUMO

As an important risk factor for many cardiovascular diseases, hypertension requires convenient and reliable methods for prevention and intervention. This study designed a visualization risk prediction system based on Machine Learning and SHAP as an auxiliary tool for personalized health management of hypertension. We used ten Machine Learning algorithms such as random forests and 1617 anonymized health check data to build ten hypertension risk prediction models. The model performance was evaluated through indicators such as accuracy, F1-score, and ROC curve. We used the best-performing model combined with the SHAP algorithm for feature importance analysis and built a visualization risk prediction system on the web page. The LightGMB model exhibited the best predictive performance, and age, alkaline phosphatase, and triglycerides were important features for predicting the risk of hypertension. Users can obtain their risk probability of hypertension and determine the focus of intervention through the visualization system built on the web page. Our research helps doctors and patients to develop personalized prevention and intervention programs for hypertension based on health check data, which has significant clinical and public health significance.


Assuntos
Doenças Cardiovasculares , Hipertensão , Humanos , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Algoritmos , Aprendizado de Máquina , Fatores de Risco
5.
Adv Mater ; 35(48): e2303595, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37489842

RESUMO

Chiral plasmonic nanomaterials with distinctive circularly polarized light-dependent optical responses over a broad range of frequency have great potential for photonic and biomedical applications. However, it still remains challenging to fabricate 3D plasmonic chiral micro-constructs with readily modulated chiroptical properties over the magnitude of ellipticity, mode frequency, and switchable handedness, especially in the vis-NIR range. In this study, polymeric micro-origami-based 3D plasmonic chiral structures are constructed through self-rolling of gold  nanospheres (AuNSs)-decorated polymeric micro-sheets. Spherical AuNSs are assembled as highly ordered linear chains on 2D rectangular micro-sheets by polydimethylsiloxane-wrinkle assisted assembly. Upon rolling the micro-sheets to micro-tubules, the AuNS chains transform into 3D helices. The AuNS-assembled helices induce collective plasmonic modes propagating in a helical manner, leading to a strong chiral response over the vis-NIR range. The circular dichroism (CD) is measured to be as high as hundreds of millidegree, and the position and sign of CD peaks are actively modulated by controlling the orientated angle of AuNS chains, enabled by tuning the collective plasmonic modes. This micro-origami-based strategy incorporates the incompatible 2D assembly technique with 3D chiral structures, opening up an intriguing way toward constructing chiral plasmonic structures and modulating chiroptical effects based on responsive polymeric materials.

6.
Small ; 19(32): e2303064, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37162465

RESUMO

Advanced multiplexing optical labels with multiple information channels provide a powerful strategy for large-capacity and high-security information encryption. However, current optical labels face challenges of difficulty to realize independent multi-channel encryption, cumbersome design, and environmental pollution. Herein, multiplexing chiroptical bio-labels integrating with multiple optical elements, including structural color, photoluminescence (PL), circular polarized light activity, humidity-responsible color, and micro/nano physical patterns, are constructed in complex design based on host-guest self-assembly of cellulose nanocrystals and bio-gold nanoclusters. The thin nanocellulose labels exhibit tunable circular polarized structural color crossover the entire visible wavelength and circularly polarized PL with the highest-recorded dissymmetry factor up to 1.05 due to the well-ordered chiral organization of templated gold nanoclusters. Most importantly, these elements can independently encode customized anti-counterfeiting information to achieve five independent channels of high-level anti-counterfeiting, which are rarely achieved in traditional materials and design counterparts. Considering the exceptional seamless integration of five independent encryption channels and the recyclable features of labels, the bio-labels have great potential for the next generation anti-counterfeiting materials technology.

7.
Langmuir ; 38(42): 12773-12784, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36239489

RESUMO

Wood-based solar steam evaporators have been attracting increasing interest due to their great potential for addressing water scarcity by utilizing sustainable materials and energy. However, engineering a 3D porous structure within the wood lumens and its effect on solar vapor evaporation have not yet been well explored. Here, a natural wood-based solar evaporator with hierarchical pores is fabricated by assembling polyvinyl alcohol within the lumens through an ice-templating approach. The polyvinyl alcohol porous network is engineered from vertically aligned microchannels to dendritically bridged pores with a narrowed size of a few micrometers and significantly increased surface area. Although the formation of plenty of microscopic channels increases the capillary force in comparison to the native wood lumen, the morphology change induces a high tortuosity factor of the porous structure, resulting in a reduced water transportation rate as well as an increased contact angle. On the other hand, the high surface area of the engineered wood lumens and the good hydrophilicity of the filled polyvinyl alcohol improve the ratio of the formed intermediate water, contributing to reduced vaporization enthalpy. Consequently, by using polydopamine as the photothermal material, the hierarchically structured polyvinyl alcohol-wood solar evaporator exhibits an evaporation rate of 1.6 kg m-2 h-1 under 1 sun irradiation and a high solar evaporation efficiency of up to 107%, which are higher than most of the reported natural-wood-based solar evaporators. Moreover, by exploring the correlation between porous morphology and performance, it has been found that the polyvinyl alcohol-wood composite not only presents an inexpensive and sustainable evaporator but also provides guidelines for designing high-performance steam generation devices.

8.
Nat Commun ; 13(1): 5804, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192544

RESUMO

Naturally derived biopolymers have attracted great interest to construct photonic materials with multi-scale ordering, adaptive birefringence, chiral organization, actuation and robustness. Nevertheless, traditional processing commonly results in non-uniform organization across large-scale areas. Here, we report magnetically steerable uniform biophotonic organization of cellulose nanocrystals decorated with superparamagnetic nanoparticles with strong magnetic susceptibility, enabling transformation from helicoidal cholesteric (chiral nematic) to uniaxial nematic phase with near-perfect orientation order parameter of 0.98 across large areas. We demonstrate that magnetically triggered high shearing rate of circular flow exceeds those for conventional evaporation-based assembly by two orders of magnitude. This high rate shearing facilitates unconventional unidirectional orientation of nanocrystals along gradient magnetic field and untwisting helical organization. These translucent magnetic films are flexible, robust, and possess anisotropic birefringence and light scattering combined with relatively high optical transparency reaching 75%. Enhanced mechanical robustness and uniform organization facilitate fast, multimodal, and repeatable actuation in response to magnetic field, humidity variation, and light illumination.


Assuntos
Materiais Inteligentes , Biopolímeros , Celulose/química , Fenômenos Magnéticos , Magnetismo
9.
ACS Appl Mater Interfaces ; 14(31): 36277-36286, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35916232

RESUMO

Birefringence has been attracting broad attention due to its strong potential for applications in biomedicine and optics, such as biomedical diagnosis, colorimetric sensing, retardant, and polarization encoding. However, engineering architectures with precisely controllable birefringence remains a challenge due to the lack of effective modulation of the localized orientation. Here, by taking advantage of the inherently one-dimensional (1D) anisotropic structure of cellulose nanocrystals (CNCs), we demonstrate an approach to tune the alignment of CNCs with a well-controllable orientation at localized preciseness, which is in contrast to the previously reported unidirectional/radical orientation of CNC-based birefringent structures. The localized modulation of CNC orientation is facilitated by directing the 1D nanocrystals to align along the template periphery and the migrated three-phase contact line during the evaporation. The resultant CNC films exhibit birefringent extinction patterns under polarized light, in which versatile pattern designs can be obtained by employing templates with different shapes and template arrays with varied layouts. Due to the locally modulated orientation of CNCs, the films indicate "kaleidoscope-like" dynamically transformable designs of the birefringent patterns depending on the polarized angle, which has barely been observed previously. Furthermore, an N-nary encoding system for abundant information storage is demonstrated based on the sunlight-transparent CNC films, but with visible extinction patterns under polarized light, which is promising for encryptions, anticounterfeiting, and imaging, enriching the attractive research area of bio-based photonics.

10.
Comput Struct Biotechnol J ; 20: 824-837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126885

RESUMO

Since Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was identified in late 2019, the coronavirus disease 2019 (COVID-19) pandemic has challenged public health around the world. Currently, there is an urgent need to explore antiviral therapeutic targets and effective clinical drugs. In this study, we systematically summarized two main therapeutic strategies against COVID-19, namely drugs targeting the SARS-CoV-2 life cycle and SARS-CoV-2-induced inflammation in host cells. The development of above two strategies is implemented by repurposing drugs and exploring potential targets. A comprehensive summary of promising drugs, especially cytokine inhibitors, and traditional Chinese medicine (TCM), provides recommendations for clinicians as evidence-based medicine in the actual clinical COVID-19 treatment. Considering the emerging SARS-CoV-2 variants greatly impact the effectiveness of drugs and vaccines, we reviewed the appearance and details of SARS-CoV-2 variants for further perspectives in drug design, which brings updating clues to develop therapeutical agents against the variants. Based on this, the development of broadly antiviral drugs, combined with immunomodulatory, or holistic therapy in the host, is prior to being considered for therapeutic interventions on mutant strains of SARS-CoV-2. Therefore, it is highly acclaimed the requirements of the concerted efforts from multi-disciplinary basic studies and clinical trials, which improves the accurate treatment of COVID-19 and optimizes the contingency measures to emerging SARS-CoV-2 variants.

11.
Chem Eng Sci ; 251: 117430, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35043022

RESUMO

Loop-mediated isothermal amplification (LAMP) is widely used in detection of pathogenic microorganisms including SARS-CoV-2. However, the performance of LAMP assay needs further exploration in the emerging SARS-CoV-2 variants test. Here, we design serials of primers and select an optimal set for LAMP-based on SARS-CoV-2 N gene for a robust and visual assay in SARS-CoV-2 diagnosis. The limit of detectable template reaches 10 copies of N gene per 25 µL reaction at isothermal 58℃ within 40 min. Importantly, the primers for LAMP assay locate at 12 to 213 nt of N gene, a highly conservative region, which serves as a compatible test in emerging SARS-CoV-2 variants. Comparison to a commercial qPCR assay, this LAMP assay exerts the high viability in diagnosis of 41 clinical samples. Our study optimizes an advantageous LAMP assay for colorimetric detection of SARS-CoV-2 and emerging variants, which is hopeful to be a promising test in COVID-19 surveillance.

12.
Small Methods ; 5(11): e2100690, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34927964

RESUMO

Tunable assembly of cellulose nanocrystals (CNCs) is important for a variety of emerging applications in optics, sensing, and security. Most exploited assembly and optical property of CNCs are cholesteric assembly and corresponding circular dichroism. However, it still remains challenge to obtain homogenous and high-resolution cholesteric assembly. Distinct assembly and optical property of CNCs are highly demanded for advanced photonic materials with novel functions. Herein, a facile and programmable approach for assembling CNCs into a novel concentric alignment using capillary flow and Marangoni effect, which is in strike contrast to conventional cholesteric assembly, is demonstrated. The concentric assembly, as quantitatively evidenced by polarized synchrotron radiation Fourier transform infrared imaging, demonstrates Maltese cross optical pattern with good uniformity and high resolution. Furthermore, this Maltese cross can be readily regulated to "on/off" states by temperature. By combining with 3D inkjet technology, a functional binary system composed of "on"/"off" CNCs optical patterns with high spatial resolution, fast printing speed, good repeatability, and precisely controllable optical property is established for information encryption and decryption. This concentric assembly of CNCs and corresponding tunable optical property emerge as a promising candidate for information security, anticounterfeiting technology, and advanced optics.

13.
ACS Appl Mater Interfaces ; 13(51): 61723-61732, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34913686

RESUMO

Tunable and reconfigurable materials with autonomic shape transformation in response to the environment have emerged as one of the most promising approaches for a variety of biomedical applications, such as tissue engineering, biosensing, and in vivo biomedical devices. Currently, it is still quite challenging to fabricate soft, microscaled 3D shape-reconfigurable structures due to either complicated microfabrication or limited microscale photopolymerization-based printing approaches to enable adaptive shape transformation. Here, a one-step photo-cross-linking approach has been demonstrated to obtain a 3D-to-3D morphological transformable microhelix from a self-rolled hydrogel microsheet, resulting in chirality conversion. It was enabled by a custom-designed "hard" stripe/"soft" groove topography on the microsheets for introducing, which introduced both in-planar and out-of-planar anisotropies. Both experiment and simulation confirmed that a stripe/groove geometry can effectively control the 3D transformation by activating in-planar or/and out-of-planar mismatch stress within the microsheets, resulting in switching of the rolling direction between perpendicular/parallel to the length of the stripe. Furthermore, versatile 3D microconstructs with the ability to transform between two distinct 3D configurations have been achieved based on controlled rolling of microhelices, demonstrated as "windmill"-to-"T-cross" and "cylinder"-to-"scroll" transformations and dynamic blossoming of biomimetic orchids. In contrast to conventional 2D-to-3D micro-origami, we have successfully demonstrated an approach for fabricating microscale, all-soft-material-based constructs with autonomic 3D-to-3D structural transformation, which presents an opportunity for designing more complex hydrogel-based microrobotics.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Impressão Tridimensional , Alicerces Teciduais/química , Materiais Biocompatíveis/síntese química , Hidrogéis/síntese química , Teste de Materiais , Microtecnologia
14.
Chem Soc Rev ; 49(3): 983-1031, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31960001

RESUMO

Biological photonic structures can precisely control light propagation, scattering, and emission via hierarchical structures and diverse chemistry, enabling biophotonic applications for transparency, camouflaging, protection, mimicking and signaling. Corresponding natural polymers are promising building blocks for constructing synthetic multifunctional photonic structures owing to their renewability, biocompatibility, mechanical robustness, ambient processing conditions, and diverse surface chemistry. In this review, we provide a summary of the light phenomena in biophotonic structures found in nature, the selection of corresponding biopolymers for synthetic photonic structures, the fabrication strategies for flexible photonics, and corresponding emerging photonic-related applications. We introduce various photonic structures, including multi-layered, opal, and chiral structures, as well as photonic networks in contrast to traditionally considered light absorption and structural photonics. Next, we summarize the bottom-up and top-down fabrication approaches and physical properties of organized biopolymers and highlight the advantages of biopolymers as building blocks for realizing unique bioenabled photonic structures. Furthermore, we consider the integration of synthetic optically active nanocomponents into organized hierarchical biopolymer frameworks for added optical functionalities, such as enhanced iridescence and chiral photoluminescence. Finally, we present an outlook on current trends in biophotonic materials design and fabrication, including current issues, critical needs, as well as promising emerging photonic applications.


Assuntos
Materiais Biomiméticos/química , Biopolímeros/química , Nanoestruturas/química , Animais , Produtos Biológicos/química , Membranas Artificiais , Estrutura Molecular , Óptica e Fotônica , Processos Fotoquímicos , Proteínas/química , Relação Estrutura-Atividade
15.
ACS Appl Mater Interfaces ; 8(27): 17694-706, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27308946

RESUMO

Microscaled self-rolling construct sheets from silk protein material have been fabricated, containing a silk bimorph composed of silk ionomers as an active layer and cross-linked silk ß-sheet as the passive layer. The programmable morphology was experimentally explored along with a computational simulation to understand the mechanism of shape reconfiguration. The neutron reflectivity shows that the active silk ionomers layer undergoes remarkable swelling (eight times increase in thickness) after deprotonation while the passive silk ß-sheet retains constant volume under the same conditions and supports the bimorph construct. This selective swelling within the silk-on-silk bimorph microsheets generates strong interfacial stress between layers and out-of-plane forces, which trigger autonomous self-rolling into various 3D constructs such as cylindrical and helical tubules. The experimental observations and computational modeling confirmed the role of interfacial stresses and allow programming the morphology of the 3D constructs with particular design. We demonstrated that the biaxial stress distribution over the 2D planar films depends upon the lateral dimensions, thickness and the aspect ratio of the microsheets. The results allow the fine-tuning of autonomous shape transformations for the further design of complex micro-origami constructs and the silk based rolling/unrolling structures provide a promising platform for polymer-based biomimetic devices for implant applications.

16.
ACS Nano ; 9(11): 10887-95, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26434779

RESUMO

We demonstrate the fabrication of highly open spherical cages with large through pores using high aspect ratio cellulose nanocrystals with "haystack" shell morphology. In contrast to traditional ultrathin shell polymer microcapsules with random porous morphology and pore sizes below 10 nm with limited molecular permeability of individual macromolecules, the resilient cage-like microcapsules show a remarkable open network morphology that facilitates across-shell transport of large solid particles with a diameter from 30 to 100 nm. Moreover, the transport properties of solid nanoparticles through these shells can be pH-triggered without disassembly of these shells. Such behavior allows for the controlled loading and unloading of solid nanoparticles with much larger dimensions than molecular objects reported for conventional polymeric microcapsules.

17.
Angew Chem Int Ed Engl ; 54(29): 8490-3, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26037165

RESUMO

We have demonstrated the facile formation of reversible and fast self-rolling biopolymer microstructures from sandwiched active-passive, silk-on-silk materials. Both experimental and modeling results confirmed that the shape of individual sheets effectively controls biaxial stresses within these sheets, which can self-roll into distinct 3D structures including microscopic rings, tubules, and helical tubules. This is a unique example of tailoring self-rolled 3D geometries through shape design without changing the inner morphology of active bimorph biomaterials. In contrast to traditional organic-soluble synthetic materials, we utilized a biocompatible and biodegradable biopolymer that underwent a facile aqueous layer-by-layer (LbL) assembly process for the fabrication of 2D films. The resulting films can undergo reversible pH-triggered rolling/unrolling, with a variety of 3D structures forming from biopolymer structures that have identical morphology and composition.


Assuntos
Materiais Biocompatíveis/química , Seda/química , Seda/ultraestrutura , Animais , Concentração de Íons de Hidrogênio
18.
Chemistry ; 21(8): 3310-7, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25639348

RESUMO

A pH-responsive nanohybrid (LDH-ZnPcPS4 ), in which a highly hydrophilic zinc(II) phthalocyanine tetra-α-substituted with 4-sulfonatophenoxy groups (ZnPcPS4 ) is incorporated with a cationic layered double hydroxide (LDH) based on electrostatic interaction, has been specially designed and prepared through a facile co-precipitation approach. ZnPcPS4 is an excellent singlet-oxygen generator with strong absorption at the near-infrared region (692 nm) in cellular culture media, whereas the photoactivities of ZnPcPS4 were remarkably inhibited after incorporation with the LDH. The nanohybrid is essentially stable in aqueous media at pH 7.4; nevertheless, in slightly acidic media of pH 6.5 or 5.0, ZnPcPS4 can be efficiently released from the LDH matrix, thus leading to restoration of the photoactivities. The nanohybrid shows a high photocytotoxicity against HepG2 cells as a result of much more efficient cellular uptake and preferential accumulation in lysosomes, whereby the acidic environment leads to the release of ZnPcPS4 . The IC50 value of LDH-ZnPcPS4 is as low as 0.053 µM, which is 24-fold lower than that of ZnPcPS4 . This work provides a facile approach for the fabrication of photosensitizers with high photocytotoxicity, potential tumor selectivity, and rapid clearance character.

20.
Small ; 10(24): 5087-97, 2014 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-25104349

RESUMO

Robust and stable microcapsules are assembled from poly-amino acid-modified silk fibroin reinforced with graphene oxide flakes using layer-by-layer (LbL) assembly, based on biocompatible natural protein and carbon nanosheets. The composite microcapsules are extremely stable in acidic (pH 2.0) and basic (pH 11.5) conditions, accompanied with pH-triggered permeability, which facilitates the controllable encapsulation and release of macromolecules. Furthermore, the graphene oxide incorporated into ultrathin LbL shells induces greatly reinforced mechanical properties, with an elastic modulus which is two orders of magnitude higher than the typical values of original silk LbL shells and shows a significant, three-fold reduction in pore size. Such strong nanocomposite microcapsules can provide solid protection of encapsulated cargo under harsh conditions, indicating a promising candidate with controllable loading/unloading for drug delivery, reinforcement, and bioengineering applications.


Assuntos
Fibroínas/química , Grafite/química , Seda/química , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Óxidos/química , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...