RESUMO
Porcine reproductive and respiratory syndrome virus (PRRSV) is a viral pathogen with substantial economic implications for the global swine industry. The existing vaccination strategies and antiviral drugs offer limited protection. Replication of the viral RNA genome encompasses a complex series of steps, wherein a replication complex is assembled from various components derived from both viral and cellular sources, as well as from the viral genomic RNA template. In this study, we found that ZNF283, a Krüppel-associated box (KRAB) containing zinc finger protein, was upregulated in PRRSV-infected Marc-145 cells and porcine alveolar macrophages and that ZNF283 inhibited PRRSV replication and RNA synthesis. We also found that ZNF283 interacts with the viral proteins Nsp9, an RNA-dependent RNA polymerase, and Nsp10, a helicase. The main regions involved in the interaction between ZNF283 and Nsp9 were determined to be the KRAB domain of ZNF283 and amino acids 178-449 of Nsp9. The KRAB domain of ZNF283 plays a role in facilitating Nsp10 binding. In addition, ZNF283 may have an affinity for the 3' untranslated region of PRRSV. These findings suggest that ZNF283 is an antiviral factor that inhibits PRRSV infection and extend our understanding of the interactions between KRAB-containing zinc finger proteins and viruses.
Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Ligação Proteica , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , RNA Viral/metabolismo , Dedos de Zinco , Replicação ViralRESUMO
Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus belonging to the Arteriviridae family. Currently, the strain has undergone numerous mutations, bringing massive losses to the swine industry worldwide. Despite several studies had been conducted on PRRSV, the molecular mechanisms by which it causes infection remain unclear. Proliferating cell nuclear antigen (PCNA) is a sign of DNA damage and it participates in DNA replication and repair. Therefore, in this study, we investigated the potential role of PCNA in PRRSV infection. We observed that PCNA expression was stable after PRRSV infection in vitro; however, PCNA was translocated from the nucleus to the cytoplasm. Notably, we found the redistribution of PCNA from the nucleus to the cytoplasm in cells transfected with the N protein. PCNA silencing inhibited PRRSV replication and the synthesis of PRRSV shorter subgenomic RNA (sgmRNA) and genomic RNA (gRNA), while PCNA overexpression promoted virus replication and PRRSV shorter sgmRNA and gRNA synthesis. By performing immunoprecipitation and immunofluorescence colocalization, we confirmed that PCNA interacted with replication-related proteins, namely NSP9, NSP12, and N, but not with NSP10 and NSP11. Domain III of the N protein (41-72 aa) interacted with the IDCL domain of PCNA (118-135 aa). Therefore, we propose cytoplasmic transport of PCNA and its subsequent influence on PRRSV RNA synthesis could be a viral strategy for manipulating cell function, thus PCNA is a potential target to prevent and control PRRSV infection.
Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Genoma Viral , Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , RNA , Suínos , Doenças dos Suínos/genética , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , RNA Subgenômico/genéticaRESUMO
Porcine reproductive and respiratory syndrome virus (PRRSV) causes respiratory disease in pigs of all ages and reproductive failure in sows, resulting in great economic losses to the swine industry. In this work, we identified the interaction between PSMB4 and PRRSV Nsp1α by yeast two-hybrid screening. The PSMB4-Nsp1α interaction was further confirmed by coimmunoprecipitation, glutathione S-transferase (GST) pulldown, and laser confocal experiments. The PCPα domain (amino acids 66 to 166) of Nsp1α and the C-terminal domain (amino acids 250 to 264) of PSMB4 were shown to be critical for the PSMB4-Nsp1α interaction. PSMB4 overexpression reduced PRRSV replication, whereas PSMB4 knockdown elicited opposing effects. Mechanistically, PSMB4 targeted K169 in Nsp1α for K63-linked ubiquitination and targeted Nsp1α for autolysosomal degradation by interacting with LC3 to enhance the activation of the lysosomal pathway. Meanwhile, we found that PSMB4 activated the NF-κB signaling pathway to produce type I interferons by downregulating the expression of IκBα and p-IκBα. In conclusion, our data revealed a new mechanism of PSMB4-mediated restriction of PRRSV replication, whereby PSMB4 was found to induce Nsp1α degradation and type I interferon expression, in order to impede the replication of PRRSV. IMPORTANCE In the swine industry, PRRSV is a continuous threat, and the current vaccines are not effective enough to block it. This study determined that PSMB4 plays an antiviral role against PRRSV. PSMB4 was found to interact with PRRSV Nsp1α, mediate K63-linked ubiquitination of Nsp1α at K169, and thus trigger its degradation via the lysosomal pathway. Additionally, PSMB4 activated the NF-κB signaling pathway to produce type I interferons by downregulating the expression of IκBα and p-IκBα. This study extends our understanding of the proteasome subunit PSMB4 against PRRSV replication and will contribute to the development of new antiviral strategies.
Assuntos
Interferon Tipo I , Vírus da Síndrome Respiratória e Reprodutiva Suína , Complexo de Endopeptidases do Proteassoma , Proteínas não Estruturais Virais , Expressão Gênica/imunologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interferon beta/genética , Lisossomos/metabolismo , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Domínios Proteicos , Proteólise , Suínos , Ubiquitinação , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , AnimaisRESUMO
Helicobacter pylori infection (HPI) is an important risk factor of gastrointestinal diseases, but factors leading to it are still not fully understood. To investigate the association between short-term exposure to air pollution and HPI during outpatient visits, we collected daily data for HPI outpatient visits and air pollutant concentrations during 2014-2021 in Hefei, Anhui Province, China. A time-stratified case-crossover design was performed to analyze the acute impacts of air pollution on HPI outpatient visits. We also explored potential effect modifiers. A total of 9072 outpatient visits were recorded. We found positive and statistically significant associations of acute exposure to nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO) with HPI outpatient visits. Threshold concentrations of the three pollutants with same-day exposure (lag 0 day) for outpatient visits were 37 µg/m3 for NO2, 8 µg/m3 for SO2, and 0.8 mg/m3 for CO. The odds ratios for HPI outpatient visits at the 95th percentile of NO2, SO2, and CO against the thresholds were 1.207 (1.120-1.302), 1.175 (1.052-1.312), and 1.110 (1.019-1.209), respectively. The associations were more evident in patients older than 45 years, females, with health insurance, and in cold seasons. Null associations of exposure to either ozone (O3) or particulate matter (PM) were observed. In summary, short-term exposure to NO2, SO2, and CO above certain concentrations, but not PM or O3, may trigger the increased risk of outpatient visits due to HP infection in Chinese population.