Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Endocrinol ; 262(2)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38842921

RESUMO

Characteristic symptoms of hyperthyroidism include weight loss, heart palpitation, and sweating. Thyroid hormones (TH) can stimulate thermogenesis through central and peripheral mechanisms. Previous studies have shown an association between dysfunction of cardiotrophin-like cytokine factor 1 (CLCF1) and cold-induced sweating syndrome, with recent research also indicating a link between CLCF1 and brown adipose tissue thermogenesis. However, it remains unclear whether CLCF1 and TH have synergistic or antagonistic effects on thermogenesis. This study aims to investigate the influence of thyroid hormone on circulating CLCF1 levels in humans and explore the potential possibilities of thyroid hormone in regulating energy metabolism by modulating Clcf1 in mice. By recruiting hyperthyroid patients and healthy subjects, we observed significantly lower serum CLCF1 levels in hyperthyroid patients compared to healthy subjects, with serum CLCF1 levels independently associated with hyperthyroidism after adjusting for potential confounders. Tissue analysis from mice treated with T3 revealed a decrease in CLCF1 expression in BAT and iWAT of C57BL/6 mice. These findings suggest that TH may play a role in regulating CLCF1 expression in adipose tissue.


Assuntos
Hipertireoidismo , Camundongos Endogâmicos C57BL , Tri-Iodotironina , Hipertireoidismo/sangue , Animais , Masculino , Tri-Iodotironina/sangue , Humanos , Camundongos , Adulto , Feminino , Pessoa de Meia-Idade , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Citocinas/sangue , Citocinas/metabolismo , Termogênese/efeitos dos fármacos , Estudos de Casos e Controles
2.
Proc Natl Acad Sci U S A ; 121(3): e2310711121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190531

RESUMO

Brown adipose tissue (BAT) is the main site of nonshivering thermogenesis which plays an important role in thermogenesis and energy metabolism. However, the regulatory factors that inhibit BAT activity remain largely unknown. Here, cardiotrophin-like cytokine factor 1 (CLCF1) is identified as a negative regulator of thermogenesis in BAT. Adenovirus-mediated overexpression of CLCF1 in BAT greatly impairs the thermogenic capacity of BAT and reduces the metabolic rate. Consistently, BAT-specific ablation of CLCF1 enhances the BAT function and energy expenditure under both thermoneutral and cold conditions. Mechanistically, adenylate cyclase 3 (ADCY3) is identified as a downstream target of CLCF1 to mediate its role in regulating thermogenesis. Furthermore, CLCF1 is identified to negatively regulate the PERK-ATF4 signaling axis to modulate the transcriptional activity of ADCY3, which activates the PKA substrate phosphorylation. Moreover, CLCF1 deletion in BAT protects the mice against diet-induced obesity by promoting BAT activation and further attenuating impaired glucose and lipid metabolism. Therefore, our results reveal the essential role of CLCF1 in regulating BAT thermogenesis and suggest that inhibiting CLCF1 signaling might be a potential therapeutic strategy for improving obesity-related metabolic disorders.


Assuntos
Tecido Adiposo Marrom , Metabolismo Energético , Animais , Camundongos , Adenoviridae , Interleucinas , Obesidade/genética , Termogênese/genética
3.
J Biol Chem ; 298(6): 101946, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35447114

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. However, the molecular mechanisms that promote dysregulation of hepatic triglyceride metabolism and lead to NAFLD are poorly understood, and effective treatments are limited. Leukemia inhibitory factor (LIF) is a member of the interleukin-6 cytokine family and has been shown to regulate a variety of physiological processes, although its role in hepatic triglyceride metabolism remains unknown. In the present study, we measured circulating LIF levels by ELISA in 214 patients with biopsy-diagnosed NAFLD as well as 314 normal control patients. We further investigated the potential role and mechanism of LIF on hepatic lipid metabolism in obese mice. We found that circulating LIF levels correlated with the severity of liver steatosis. Patients with ballooning, fibrosis, lobular inflammation, and abnormally elevated liver injury markers alanine transaminase and aspartate aminotransferase also had higher levels of serum LIF than control patients. Furthermore, animal studies showed that white adipose tissue-derived LIF could ameliorate liver steatosis through activation of hepatic LIF receptor signaling pathways. Together, our results suggested that targeting LIF-LIF receptor signaling might be a promising strategy for treating NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Fator Inibidor de Leucemia/sangue , Fator Inibidor de Leucemia/metabolismo , Fígado/patologia , Camundongos , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Triglicerídeos/metabolismo
4.
Adv Sci (Weinh) ; 7(12): 1903366, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32596110

RESUMO

Iron homeostasis is essential for maintaining cellular function in a wide range of cell types. However, whether iron affects the thermogenic properties of adipocytes is currently unknown. Using integrative analyses of multi-omics data, transferrin receptor 1 (Tfr1) is identified as a candidate for regulating thermogenesis in beige adipocytes. Furthermore, it is shown that mice lacking Tfr1 specifically in adipocytes have impaired thermogenesis, increased insulin resistance, and low-grade inflammation accompanied by iron deficiency and mitochondrial dysfunction. Mechanistically, the cold treatment in beige adipocytes selectively stabilizes hypoxia-inducible factor 1-alpha (HIF1α), upregulating the Tfr1 gene, and thermogenic adipocyte-specific Hif1α deletion reduces thermogenic gene expression in beige fat without altering core body temperature. Notably, Tfr1 deficiency in interscapular brown adipose tissue (iBAT) leads to the transdifferentiation of brown preadipocytes into white adipocytes and muscle cells; in contrast, long-term exposure to a low-iron diet fails to phenocopy the transdifferentiation effect found in Tfr1-deficient mice. Moreover, mice lacking transmembrane serine protease 6 (Tmprss6) develop iron deficiency in both inguinal white adipose tissue (iWAT) and iBAT, and have impaired cold-induced beige adipocyte formation and brown fat thermogenesis. Taken together, these findings indicate that Tfr1 plays an essential role in thermogenic adipocytes via both iron-dependent and iron-independent mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...