Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2404211, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981027

RESUMO

Dysphagia is more common in conditions such as stroke, Parkinson's disease, and head and neck cancer. This can lead to pneumonia, choking, malnutrition, and dehydration. Currently, the diagnostic gold standard uses radiologic imaging, the videofluoroscopic swallow study (VFSS); however, it is expensive and necessitates specialized facilities and trained personnel. Although several devices attempt to address the limitations, none offer the clinical-grade quality and accuracy of the VFSS. Here, this study reports a wireless multimodal wearable system with machine learning for automatic, accurate clinical assessment of swallowing behavior and diagnosis of silent aspirations from dysphagia patients. The device includes a kirigami-structured electrode that suppresses changes in skin contact impedance caused by movements and a microphone with a gel layer that effectively blocks external noise for measuring high-quality electromyograms and swallowing sounds. The deep learning algorithm offers the classification of swallowing patterns while diagnosing silent aspirations, with an accuracy of 89.47%. The demonstration with post-stroke patients captures the system's significance in measuring multiple physiological signals in real-time for detecting swallowing disorders, validated by comparing them with the VFSS. The multimodal electronics can ensure a promising future for dysphagia healthcare and rehabilitation therapy, providing an accurate, non-invasive alternative for monitoring swallowing and aspiration events.

2.
Adv Sci (Weinh) ; : e2403238, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950170

RESUMO

Athletes are at high risk of dehydration, fatigue, and cardiac disorders due to extreme performance in often harsh environments. Despite advancements in sports training protocols, there is an urgent need for a non-invasive system capable of comprehensive health monitoring. Although a few existing wearables measure athlete's performance, they are limited by a single function, rigidity, bulkiness, and required straps and adhesives. Here, an all-in-one, multi-sensor integrated wearable system utilizing a set of nanomembrane soft sensors and electronics, enabling wireless, real-time, continuous monitoring of saliva osmolality, skin temperature, and heart functions is introduced. This system, using a soft patch and a sensor-integrated mouthguard, provides comprehensive monitoring of an athlete's hydration and physiological stress levels. A validation study in detecting real-time physiological levels shows the device's performance in capturing moments (400-500 s) of synchronized acute elevation in dehydration (350%) and physiological strain (175%) during field training sessions. Demonstration with a few human subjects highlights the system's capability to detect early signs of health abnormality, thus improving the healthcare of sports athletes.

3.
Nanoscale ; 16(29): 14143-14154, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39011622

RESUMO

Rapidly fabricating flexible and stretchable sensors on nonplanar surfaces is crucial for wearable device applications. We employed a novel fabrication method, incorporating molds and gels into electroless plating, to enable direct printing of sensors on a wide array of surfaces, from those with up to 100 µm profile heights to hydrogels with a Young's modulus of 100 kPa. This coatable strain (CS) sensor offers several potential advantages. Firstly, it is designed to circumvent the typical limitations of limited flexibility, plastic deformation, and low repeatability found in viscoelastic polymers by being directly coated onto the surface without requiring a substrate. Secondly, it potentially increases the effective contact area and signal-to-noise ratio by eliminating voids between the sensor and the surface. Finally, the CS sensor can obtain any desired patterning at room temperature in a matter of minutes, significantly reducing energy and time consumption. In this study, we demonstrated the versatility of the CS sensor by applying it to a range of substrates, showcasing its adaptability to diverse materials, surface roughness levels, and Young's modulus values. Our primary focus was on plant growth monitoring, a challenging application that showcased the sensor's efficacy on surfaces like needles, hairy leaves, and fruits. These applications, traditionally difficult for conventional polymer-based sensors, serve to illustrate the CS sensor's potential in a range of complex environmental contexts. The successful deployment of the CS sensor in these settings suggests its broader applicability in various scientific and technological fields, potentially contributing to significant developments in the area of wearable devices and beyond.

4.
ACS Appl Mater Interfaces ; 16(29): 37401-37417, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38981010

RESUMO

Continuous monitoring of physiological signals from the human body is critical in health monitoring, disease diagnosis, and therapeutics. Despite the needs, the existing wearable medical devices rely on either bulky wired systems or battery-powered devices needing frequent recharging. Here, we introduce a wearable, self-powered, thermoelectric flexible system architecture for wireless portable monitoring of physiological signals without recharging batteries. This system harvests an exceptionally high open circuit voltage of 175-180 mV from the human body, powering the wireless wearable bioelectronics to detect electrophysiological signals on the skin continuously. The thermoelectric system shows long-term stability in performance for 7 days with stable power management. Integrating screen printing, laser micromachining, and soft packaging technologies enables a multilayered, soft, wearable device to be mounted on any body part. The demonstration of the self-sustainable wearable system for detecting electromyograms and electrocardiograms captures the potential of the platform technology to offer various opportunities for continuous monitoring of biosignals, remote health monitoring, and automated disease diagnosis.


Assuntos
Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Humanos , Tecnologia sem Fio/instrumentação , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Fontes de Energia Elétrica , Eletrocardiografia/instrumentação , Eletromiografia/instrumentação , Desenho de Equipamento
5.
Biosens Bioelectron ; 261: 116472, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38878696

RESUMO

Unlike conventional rigid counterparts, soft and stretchable electronics forms crack- or defect-free conformal interfaces with biological tissues, enabling precise and reliable interventions in diagnosis and treatment of human diseases. Intrinsically soft and elastic materials, and device designs of innovative configurations and structures leads to the emergence of such features, particularly, the mechanical compliance provides seamless integration into continuous movements and deformations of dynamic organs such as the bladder and heart, without disrupting natural physiological functions. This review introduces the development of soft, implantable electronics tailored for dynamic organs, covering various materials, mechanical design strategies, and representative applications for the bladder and heart, and concludes with insights into future directions toward clinically relevant tools.


Assuntos
Técnicas Biossensoriais , Desenho de Equipamento , Bexiga Urinária , Humanos , Técnicas Biossensoriais/instrumentação , Próteses e Implantes , Coração , Dispositivos Eletrônicos Vestíveis , Animais , Eletrônica/instrumentação
6.
Commun Mater ; 5(1): 72, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737724

RESUMO

Health monitoring of infant patients in intensive care can be especially strenuous for both the patient and their caregiver, as testing setups involve a tangle of electrodes, probes, and catheters that keep the patient bedridden. This has typically involved expensive and imposing machines, to track physiological metrics such as heart rate, respiration rate, temperature, blood oxygen saturation, blood pressure, and ion concentrations. However, in the past couple of decades, research advancements have propelled a world of soft, wearable, and non-invasive systems to supersede current practices. This paper summarizes the latest advancements in neonatal wearable systems and the different approaches to each branch of physiological monitoring, with an emphasis on smart skin-interfaced wearables. Weaknesses and shortfalls are also addressed, with some guidelines provided to help drive the further research needed.

7.
Biosens Bioelectron ; 257: 116302, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648705

RESUMO

This review article focuses on the recent printing technological progress in healthcare, underscoring the significant potential of implantable devices across diverse applications. Printing technologies have widespread use in developing health monitoring devices, diagnostic systems, and surgical devices. Recent years have witnessed remarkable progress in fabricating low-profile implantable devices, driven by advancements in printing technologies and nanomaterials. The importance of implantable biosensors and bioelectronics is highlighted, specifically exploring printing tools using bio-printable inks for practical applications, including a detailed examination of fabrication processes and essential parameters. This review also justifies the need for mechanical and electrical compatibility between bioelectronics and biological tissues. In addition to technological aspects, this article delves into the importance of appropriate packaging methods to enhance implantable devices' performance, compatibility, and longevity, which are made possible by integrating cutting-edge printing technology. Collectively, we aim to shed light on the holistic landscape of implantable biosensors and bioelectronics, showcasing their evolving role in advancing healthcare through innovative printing technologies.


Assuntos
Técnicas Biossensoriais , Próteses e Implantes , Técnicas Biossensoriais/instrumentação , Humanos , Eletrônica/instrumentação , Impressão Tridimensional , Desenho de Equipamento , Nanoestruturas/química , Atenção à Saúde/tendências
8.
Biosens Bioelectron ; 255: 116267, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38581838

RESUMO

External ventricular drainage is one of the most common neurosurgical procedures in the world for acute hydrocephalus, which must be performed carefully by a neurosurgeon. Although various neuromonitoring external ventricular drain (EVD) catheters have been utilized, they still suffer from rigidity and bulkiness to mitigate post-EVD placement trauma. Here, we introduce a flexible and low-profile smart EVD catheter using a class of technologies with sensitive electrical materials, seamless integration, and flexible mechanics, which serves as a highly soft and minimally invasive device to monitor electrical brain signals. This device reliably captures biopotentials in real time while exhibiting remarkable flexibility and reliability. The seamless integration of its sensory system promises a minimally invasive EVD placement on brain tissue. This work validates the device's distinct characteristics and performances through in vitro experiments and computational analysis. Collectively, this device's exceptional patient- and user-friendly attributes highlight its potential as one of the most practical EVD catheters.


Assuntos
Técnicas Biossensoriais , Humanos , Reprodutibilidade dos Testes , Catéteres , Encéfalo , Drenagem/métodos
9.
Biosens Bioelectron ; 254: 116222, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518560

RESUMO

Materials that have the ability to manipulate shapes in response to stimuli such as heat, light, humidity and magnetism offer a means for versatile, sophisticated functions in soft robotics or biomedical implants, while such a reactive transformation has certain drawbacks including high operating temperatures, inherent rigidity and biological hazard. Herein, we introduce biodegradable, self-adhesive, shape-transformable poly (L-lactide-co-ε-caprolactone) (BSS-PLCL) that can be triggered via thermal stimulation near physiological temperature (∼38 °C). Chemical inspections confirm the fundamental properties of the synthetic materials in diverse aspects, and study on mechanical and biochemical characteristics validates exceptional stretchability up to 800 % and tunable dissolution behaviors under biological conditions. The integration of the functional polymer with a bioresorbable electronic system highlights potential for a wide range of biomedical applications.


Assuntos
Técnicas Biossensoriais , Elastômeros , Elastômeros/química , Materiais Biocompatíveis/química , Implantes Absorvíveis , Polímeros/química , Poliésteres/química
10.
Biosens Bioelectron ; 254: 116223, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518561

RESUMO

Pursuing accurate, swift, and durable pH sensors is important across numerous fields, encompassing healthcare, environmental surveillance, and agriculture. In particular, the emphasis on real-time pH monitoring during cell cultivation has become increasingly pronounced in the current scientific environment-a crucial element being diligently researched to ensure optimal cell production. Both polyaniline (PANi) and iridium oxide (IrOx) show their worth in pH sensing, yet they come with challenges. Single-PANi-layered pH sensors often grapple with diminished sensitivity and lagging responses, while electrodeposited IrOx structures exhibit poor adhesion, leading to their separation from metallic substrates-a trait undesirable for a consistently stable, long-term pH sensor. This paper introduces a bi-layered PANi-IrOx pH sensor, strategically leveraging the advantages of both materials. The results presented here underscore the sensitivity enhancement of binary-phased framework, faster response time, and more robust structure than prior work. Through this synergistic strategy, we demonstrate the potential of integrating different phases to overcome the inherent constraints of individual materials, setting the stage for advanced pH-sensing solutions.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Técnicas de Cultura de Células , Compostos de Anilina/química , Concentração de Íons de Hidrogênio
11.
Biophys Rev (Melville) ; 5(1): 011301, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38510371

RESUMO

Human-machine interfaces (HMI) are currently a trendy and rapidly expanding area of research. Interestingly, the human user does not readily observe the interface between humans and machines. Instead, interactions between the machine and electrical signals from the user's body are obscured by complex control algorithms. The result is effectively a one-way street, wherein data is only transmitted from human to machine. Thus, a gap remains in the literature: how can information be effectively conveyed to the user to enable mutual understanding between humans and machines? Here, this paper reviews recent advancements in biosignal-integrated wearable robotics, with a particular emphasis on "visualization"-the presentation of relevant data, statistics, and visual feedback to the user. This review article covers various signals of interest, such as electroencephalograms and electromyograms, and explores novel sensor architectures and key materials. Recent developments in wearable robotics are examined from control and mechanical design perspectives. Additionally, we discuss current visualization methods and outline the field's future direction. While much of the HMI field focuses on biomedical and healthcare applications, such as rehabilitation of spinal cord injury and stroke patients, this paper also covers less common applications in manufacturing, defense, and other domains.

12.
Mov Disord ; 39(4): 738-745, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310362

RESUMO

BACKGROUND: Blepharospasm is treated with botulinum toxin, but obtaining satisfactory results is sometimes challenging. OBJECTIVE: The aim is to conduct an exploratory trial of oral dipraglurant for blepharospasm. METHODS: This study was an exploratory, phase 2a, randomized, double-blind, placebo-controlled trial of 15 participants who were assigned to receive a placebo or dipraglurant (50 or 100 mg) and assessed over 2 days, 1 and 2 hours following dosing. Outcome measures included multiple scales rated by clinicians or participants, digital video, and a wearable sensor. RESULTS: Dipraglurant was well tolerated, with no obvious impact on any of the measurement outcomes. Power analyses suggested fewer subjects would be required for studies using a within-subject versus independent group design, especially for certain measures. Some outcome measures appeared more suitable than others. CONCLUSION: Although dipraglurant appeared well tolerated, it did not produce a trend for clinical benefit. The results provide valuable information for planning further trials in blepharospasm. © 2024 International Parkinson and Movement Disorder Society.


Assuntos
Blefarospasmo , Humanos , Blefarospasmo/tratamento farmacológico , Método Duplo-Cego , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento
13.
Sci Adv ; 10(7): eadk6714, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354246

RESUMO

Achieving large-scale, cost-effective, and reproducible manufacturing of stem cells with the existing devices is challenging. Traditional single-use cell-bag bioreactors, limited by their rigid and single-point sensors, struggle with accuracy and scalability for high-quality cell manufacturing. Here, we introduce a smart bioreactor system that enables multi-spatial sensing for real-time, wireless culture monitoring. This scalable system includes a low-profile, label-free thin-film sensor array and electronics integrated with a flexible cell bag, allowing for simultaneous assessment of culture properties such as pH, dissolved oxygen, glucose, and temperature, to receive real-time feedback for up to 30 days. The experimental results show the accurate monitoring of time-dynamic and spatial variations of stem cells and myoblast cells with adjustable carriers from a plastic dish to a 2-liter cell bag. These advances open up the broad applicability of the smart sensing system for large-scale, lower-cost, reproducible, and high-quality engineered cell manufacturing for broad clinical use.


Assuntos
Eletrônica , Dispositivos Eletrônicos Vestíveis , Técnicas de Cultura de Células , Reatores Biológicos , Células-Tronco
14.
Adv Sci (Weinh) ; 11(13): e2307609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279514

RESUMO

Noncommunicable diseases (NCD), such as obesity, diabetes, and cardiovascular disease, are defining healthcare challenges of the 21st century. Medical infrastructure, which for decades sought to reduce the incidence and severity of communicable diseases, has proven insufficient in meeting the intensive, long-term monitoring needs of many NCD disease patient groups. In addition, existing portable devices with rigid electronics are still limited in clinical use due to unreliable data, limited functionality, and lack of continuous measurement ability. Here, a wearable system for at-home cardiovascular monitoring of postpartum women-a group with urgently unmet NCD needs in the United States-using a cloud-integrated soft sternal device with conformal nanomembrane sensors is introduced. A supporting mobile application provides device data to a custom cloud architecture for real-time waveform analytics, including medical device-grade blood pressure prediction via deep learning, and shares the results with both patient and clinician to complete a robust and highly scalable remote monitoring ecosystem. Validated in a month-long clinical study with 20 postpartum Black women, the system demonstrates its ability to remotely monitor existing disease progression, stratify patient risk, and augment clinical decision-making by informing interventions for groups whose healthcare needs otherwise remain unmet in standard clinical practice.


Assuntos
Aplicativos Móveis , Doenças não Transmissíveis , Dispositivos Eletrônicos Vestíveis , Feminino , Humanos , Monitorização Fisiológica
15.
Natl Sci Rev ; 11(2): nwad298, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38213520

RESUMO

Soft electromechanical sensors have led to a new paradigm of electronic devices for novel motion-based wearable applications in our daily lives. However, the vast amount of random and unidentified signals generated by complex body motions has hindered the precise recognition and practical application of this technology. Recent advancements in artificial-intelligence technology have enabled significant strides in extracting features from massive and intricate data sets, thereby presenting a breakthrough in utilizing wearable sensors for practical applications. Beyond traditional machine-learning techniques for classifying simple gestures, advanced machine-learning algorithms have been developed to handle more complex and nuanced motion-based tasks with restricted training data sets. Machine-learning techniques have improved the ability to perceive, and thus machine-learned wearable soft sensors have enabled accurate and rapid human-gesture recognition, providing real-time feedback to users. This forms a crucial component of future wearable electronics, contributing to a robust human-machine interface. In this review, we provide a comprehensive summary covering materials, structures and machine-learning algorithms for hand-gesture recognition and possible practical applications through machine-learned wearable electromechanical sensors.

16.
Biosens Bioelectron ; 248: 115983, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163399

RESUMO

The inability to objectively quantify cognitive stress in real-time with wearable devices is a crucial unsolved problem with serious negative consequences for dementia and mental disability patients and those seeking to improve their quality of life. Here, we introduce a skin-like, wireless sternal patch that captures changes in cardiac mechanics due to stress manifesting in the seismocardiogram (SCG) signals. Judicious optimization of the device's micro-structured interconnections and elastomer integration yields a device that sufficiently matches the skin's mechanics, robustly yet gently adheres to the skin without aggressive tapes, and captures planar and longitudinal SCG waves well. The device transmits SCG beats in real-time to a user's device, where derived features relate to the heartbeat's mechanical morphology. The signals are assessed by a series of features in a support vector machine regressor. Controlled studies, compared to gold standard cortisol and following the validated imaging test, show an R-squared correlation of 0.79 between the stress prediction and cortisol change, significantly improving over prior works. Likewise, the system demonstrates excellent robustness to external temperature and physical recovery status while showing excellent accuracy and wearability in full-day use.


Assuntos
Técnicas Biossensoriais , Hidrocortisona , Humanos , Qualidade de Vida , Coração , Cognição
17.
Sci Adv ; 10(3): eadk5260, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38232166

RESUMO

High-fidelity and comfortable recording of electrophysiological (EP) signals with on-the-fly setup is essential for health care and human-machine interfaces (HMIs). Microneedle electrodes allow direct access to the epidermis and eliminate time-consuming skin preparation. However, existing microneedle electrodes lack elasticity and reliability required for robust skin interfacing, thereby making long-term, high-quality EP sensing challenging during body movement. Here, we introduce a stretchable microneedle adhesive patch (SNAP) providing excellent skin penetrability and a robust electromechanical skin interface for prolonged and reliable EP monitoring under varying skin conditions. Results demonstrate that the SNAP can substantially reduce skin contact impedance under skin contamination and enhance wearing comfort during motion, outperforming gel and flexible microneedle electrodes. Our wireless SNAP demonstration for exoskeleton robot control shows its potential for highly reliable HMIs, even under time-dynamic skin conditions. We envision that the SNAP will open new opportunities for wearable EP sensing and its real-world applications in HMIs.


Assuntos
Exoesqueleto Energizado , Robótica , Humanos , Adesivos , Reprodutibilidade dos Testes , Pele , Eletrodos
18.
Adv Sci (Weinh) ; 11(7): e2305871, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087936

RESUMO

Augmented reality (AR) is a computer graphics technique that creates a seamless interface between the real and virtual worlds. AR usage rapidly spreads across diverse areas, such as healthcare, education, and entertainment. Despite its immense potential, AR interface controls rely on an external joystick, a smartphone, or a fixed camera system susceptible to lighting. Here, an AR-integrated soft wearable electronic system that detects the gestures of a subject for more intuitive, accurate, and direct control of external systems is introduced. Specifically, a soft, all-in-one wearable device includes a scalable electrode array and integrated wireless system to measure electromyograms for real-time continuous recognition of hand gestures. An advanced machine learning algorithm embedded in the system enables the classification of ten different classes with an accuracy of 96.08%. Compared to the conventional rigid wearables, the multi-channel soft wearable system offers an enhanced signal-to-noise ratio and consistency over multiple uses due to skin conformality. The demonstration of the AR-integrated soft wearable system for drone control captures the potential of the platform technology to offer numerous human-machine interface opportunities for users to interact remotely with external hardware and software.


Assuntos
Realidade Aumentada , Dispositivos Eletrônicos Vestíveis , Humanos , Pele , Eletrônica , Eletrodos
19.
Nanomicro Lett ; 16(1): 52, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099970

RESUMO

This review summarizes recent progress in developing wireless, batteryless, fully implantable biomedical devices for real-time continuous physiological signal monitoring, focusing on advancing human health care. Design considerations, such as biological constraints, energy sourcing, and wireless communication, are discussed in achieving the desired performance of the devices and enhanced interface with human tissues. In addition, we review the recent achievements in materials used for developing implantable systems, emphasizing their importance in achieving multi-functionalities, biocompatibility, and hemocompatibility. The wireless, batteryless devices offer minimally invasive device insertion to the body, enabling portable health monitoring and advanced disease diagnosis. Lastly, we summarize the most recent practical applications of advanced implantable devices for human health care, highlighting their potential for immediate commercialization and clinical uses.

20.
Biosens Bioelectron ; 241: 115650, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717424

RESUMO

Atherosclerosis is a prominent cause of coronary artery disease and broader cardiovascular diseases, the leading cause of death worldwide. Angioplasty and stenting is a common treatment, but in-stent restenosis, where the artery re-narrows, is a frequent complication. Restenosis is detected through invasive procedures and is not currently monitored frequently for patients. Here, we report an implantable vascular bioelectronic device using a newly developed miniaturized strain sensor via microneedle printing methods. A capillary-based printing system achieves high-resolution patterning of a soft, capacitive strain sensor. Ink and printing parameters are evaluated to create a fully printed sensor, while sensor design and sensing mechanism are studied to enhance sensitivity and minimize sensor size. The sensor is integrated with a wireless vascular stent, offering a biocompatible, battery-free, wireless monitoring system compatible with conventional catheterization procedures. The vascular sensing system is demonstrated in an artery model for monitoring restenosis progression. Collectively, the artery implantable bioelectronic system shows the potential for wireless, real-time monitoring of various cardiovascular diseases and stent-integrated sensing/treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...