Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980228

RESUMO

Toll-like receptor 4 (TLR-4) ligands were initially shown to be the source of lipopolysaccharide (LPS), a gram-negative bacterium's cell wall immunostimulatory component. Oxidative stress, apoptosis, and inflammation are all potential effects of LPS treatment on the lungs. By triggering oxidative stress and inflammation, these negative effects could be avoided. Robust flavonoid oleuropein (OLE) exhibits anti-inflammatory, antiproliferative, and antioxidative properties. A nanodelivery system could improve its low bioavailability, making it more effective and useful in treating chronic human ailments. This study evaluates the effects of AgNP-loaded OLE on LPS-induced lung injury in rats in terms of TLR4/P2X7 receptor-mediated inflammation and apoptosis. Forty-eight male albino rats were randomly divided into eight groups. Drugs were administered to the groups in the doses specified as follows: Control, LPS (8 mg/kg ip), OLE (50 mg/kg) AgNPs (100 mg/kg), OLE + AgNPs (50 mg/kg), LPS + OLE (oleuropein 50 mg/kg ig + LPS 8 mg/kg ip), LPS + AgNPs (AgNPs 100 mg/kg ig + LPS 8 mg/kg ip), and LPS + OLE + AgNPs (OLE + AgNPs 50 mg/kg + LPS 8 mg/kg ip). After the applications, the rats were decapitated under appropriate conditions, and lung tissues were obtained. Oxidative stress (SOD, MDA, and GSH), and inflammation (IL-6, IL-1ß, TNF-α, Nrf2, P2X7R, AKT, and TLR4) parameters were evaluated in the obtained lung tissues. Additionally, histopathology studies were performed on lung tissue samples. The data obtained were evaluated by comparison between groups. Both OLE and OLE + AgNPs showed potential in reducing oxidative stress, inflammation, and apoptosis (p < 0.05). These findings were supported by histopathological analysis, which revealed that tissue damage was reduced in OLE and OLE + AgNPs-treated groups. According to the results, LPS-induced lung injury can be reduced by using nanotechnology and producing OLE + AgNP.

3.
Biol Trace Elem Res ; 202(10): 4494-4507, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38358644

RESUMO

Metformin is commonly prescribed to people with diabetes. Metformin has been shown in previous studies to be able to prevent the growth of cancer cells. This study aims to investigate the effects of metformin and gold nanoparticles in MCF7 breast cancer and A549 lung cell lines. The effects of metformin and gold nanoparticles on MCF7 breast cancer and A549 lung cells were determined on cells grown in 24 h cell culture. MCF-7 and A549 cells were incubated for 24 h with the treatment of escalating molar concentrations of ifosfamide. The MTT assay was used to determine the cytotoxicity of metformin toward MCF7 and A549 cell lines. The expression of Bax, BCL2, PI3K, Akt3, mTOR, Hsp60, Hsp70, and TNF-α was measured by RT-PCR. Metformin and gold nanoparticles inhibited the proliferation of MCF-7 and A549 cells in a dose and time-dependent manner with an IC50 value of 5 µM and 10 µg/mL. RT-PCR assays showed ifosfamide + metformin + gold nanoparticles significantly reduced the expression of BCL2, PI3K, Akt3, mTOR, Hsp60 and Hsp70 and increased the expression of TNF-α and Bax. The findings obtained in this study suggest that further studies should be conducted, and metformin and gold nanoparticles can be used in breast cancer and lung cancer treatments.


Assuntos
Proliferação de Células , Ouro , Nanopartículas Metálicas , Metformina , Humanos , Metformina/farmacologia , Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas/química , Células A549 , Células MCF-7 , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais
4.
Biol Trace Elem Res ; 202(10): 4687-4698, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38197904

RESUMO

Doxorubicin (DOX) is the most used chemotherapeutic agent for treating solid tumors. DOX treatment may lead to testicular damage using oxidative stress, resulting in infertility. These adverse effects may be prevented by the activation of antioxidant systems. Oleuropein (OLE) is a powerful flavonoid with several ameliorative effects, including antioxidative, antiproliferative, and anti-inflammatory. It would be more efficient and applicable in treating chronic human diseases if its poor bioavailability improves with a nano-delivery system. The current study aims to assess the histopathological changes and antioxidative effects of OLE loaded with silver nanoparticles oleuropein (OLE-AgNP) on the testicular injury triggered by DOX in rats. Forty-eight male albino rats were randomly divided into six groups as follows: the control, DOX (2.5 mg/kg), OLE (50 mg/kg), AgNP (100 mg/kg), OLE + AgNP (50 mg/kg), OLE (50 mg/kg) + DOX (2.5 mg/kg), AgNP (100 mg/kg) + DOX (2.5 mg/kg), and OLE-AgNP (50 mg/kg) + DOX (2.5 mg/kg) for 11 days. Oxidative stress, inflammation, apoptosis, endoplasmic reticulum stress markers, sperm analysis, and histopathological analyses were performed on testicular tissues taken from rats decapitated after the applications and compared between the experimental groups. The tissue MDA level was lower in the OLE and OLE+AgNP-treated groups than in the DOX-treated group. In addition, SOD and GSH levels significantly increased in both the OLE and OLE+AgNP-treated groups compared to the DOX group. Both OLE and OLE+AgNP, particularly OLE+AgNP, ameliorated DOX-induced testicular tissue injury, as evidenced by reduced injury and improved seminiferous tubules and spermatocyte area. In addition, OLE and OLE+AgNP, especially OLE+AgNP, inhibited DOX-induced testicular tissue inflammation, apoptosis, and endoplasmic reticulum stress. The findings suggest that nanotechnology and the production of OLE+AgNP can ameliorate DOX-induced testicular damage.


Assuntos
Apoptose , Doxorrubicina , Estresse do Retículo Endoplasmático , Glucosídeos Iridoides , Iridoides , Nanopartículas Metálicas , Prata , Testículo , Animais , Masculino , Glucosídeos Iridoides/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Ratos , Testículo/efeitos dos fármacos , Testículo/patologia , Testículo/metabolismo , Iridoides/farmacologia , Iridoides/química , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia
5.
Environ Toxicol ; 39(3): 1531-1543, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009636

RESUMO

Cerebral ischemia and reperfusion are related to various situations like injuries after various traumas, oxidative stress, increased calcium ion, capillary hypoperfusion, microvascular hyperpermeability, leukocyte infiltration, and blood-brain barrier disruption. An antidepressant Agomelatine which is a melatonin receptor (MT1/MT2) agonist and serotonin receptor (5-HT2C) antagonist has been reported by studies to have antioxidant and anti-inflammatory effects. In our study, we aimed to detect the effects of citrate-coated silver nanoparticle-loaded agomelatine application on neurodegeneration, endoplasmic reticulum stress, autophagic and apoptotic cell death, inflammation, and P2X7R expression in the cerebral ischemia-reperfusion model to facilitate the passage of blood-brain barrier. Forty two Sprague-Dawley rats in total were divided into six equal groups (n:7) and applications were performed. Acute cerebral injury in the ischemia-reperfusion model was created 2 h after internal carotid artery ligation in rats and then at the 2nd hour of reperfusion citrate-coated silver nanoparticles loaded with Agomelatine were applied. Twenty four hours later, neurologic analysis on animals in experimental groups was performed, animals were decapitated and GSH, GPx, SOD, CAT, MDA, IL-1ß, and TNF-α parameters were examined after taking blood and the cerebral tissue samples. As a result, it was determined that ischemia-reperfusion caused endoplasmic reticulum stress in the cerebral tissues and thus caused cellular injury.


Assuntos
Isquemia Encefálica , Nanopartículas Metálicas , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Inflamassomos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Prata , Ácido Cítrico/farmacologia , Traumatismo por Reperfusão/metabolismo , Estresse Oxidativo , Isquemia Encefálica/metabolismo , Citratos/farmacologia , Reperfusão , Isquemia , Estresse do Retículo Endoplasmático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...