Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(12): 102625, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306823

RESUMO

Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder caused by N-sulfoglucosamine sulfohydrolase (SGSH) deficiency. SGSH removes the sulfate from N-sulfoglucosamine residues on the nonreducing end of heparan sulfate (HS-NRE) within lysosomes. Enzyme deficiency results in accumulation of partially degraded HS within lysosomes throughout the body, leading to a progressive severe neurological disease. Enzyme replacement therapy has been proposed, but further evaluation of the treatment strategy is needed. Here, we used Chinese hamster ovary cells to produce a highly soluble and fully active recombinant human sulfamidase (rhSGSH). We discovered that rhSGSH utilizes both the CI-MPR and LRP1 receptors for uptake into patient fibroblasts. A single intracerebroventricular (ICV) injection of rhSGSH in MPS IIIA mice resulted in a tissue half-life of 9 days and widespread distribution throughout the brain. Following a single ICV dose, both total HS and the MPS IIIA disease-specific HS-NRE were dramatically reduced, reaching a nadir 2 weeks post dose. The durability of effect for reduction of both substrate and protein markers of lysosomal dysfunction and a neuroimmune response lasted through the 56 days tested. Furthermore, seven weekly 148 µg doses ICV reduced those markers to near normal and produced a 99.5% reduction in HS-NRE levels. A pilot study utilizing every other week dosing in two animals supports further evaluation of less frequent dosing. Finally, our dose-response study also suggests lower doses may be efficacious. Our findings show that rhSGSH can normalize lysosomal HS storage and markers of a neuroimmune response when delivered ICV.


Assuntos
Encefalopatias , Mucopolissacaridose III , Cricetinae , Animais , Humanos , Camundongos , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/metabolismo , Células CHO , Projetos Piloto , Cricetulus , Hidrolases/metabolismo , Encéfalo/metabolismo , Heparitina Sulfato/metabolismo , Encefalopatias/metabolismo , Lisossomos/metabolismo , Modelos Animais de Doenças
2.
J Biol Chem ; 288(20): 14200-14211, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23543739

RESUMO

The biosynthesis of iron sulfur (FeS) clusters, their trafficking from initial assembly on scaffold proteins via carrier proteins to final incorporation into FeS apoproteins, is a highly coordinated process enabled by multiprotein systems encoded in iscRSUAhscBAfdx and sufABCDSE operons in Escherichia coli. Although these systems are believed to encode all factors required for initial cluster assembly and transfer to FeS carrier proteins, accessory factors such as monothiol glutaredoxin, GrxD, and the FeS carrier protein NfuA are located outside of these defined systems. These factors have been suggested to function both as shuttle proteins acting to transfer clusters between scaffold and carrier proteins and in the final stages of FeS protein assembly by transferring clusters to client FeS apoproteins. Here we implicate both of these factors in client protein interactions. We demonstrate specific interactions between GrxD, NfuA, and the methylthiolase MiaB, a radical S-adenosyl-L-methionine-dependent enzyme involved in the maturation of a subset of tRNAs. We show that GrxD and NfuA physically interact with MiaB with affinities compatible with an in vivo function. We furthermore demonstrate that NfuA is able to transfer its cluster in vitro to MiaB, whereas GrxD is unable to do so. The relevance of these interactions was demonstrated by linking the activity of MiaB with GrxD and NfuA in vivo. We observe a severe defect in in vivo MiaB activity in cells lacking both GrxD and NfuA, suggesting that these proteins could play complementary roles in maturation and repair of MiaB.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Glutarredoxinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Sulfurtransferases/metabolismo , Catálise , Dicroísmo Circular , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Radicais Livres , Glutarredoxinas/genética , Proteínas Ferro-Enxofre/genética , Mutação , Mapeamento de Interação de Proteínas , RNA de Transferência/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Sulfurtransferases/genética , Ressonância de Plasmônio de Superfície
4.
Biochemistry ; 50(26): 5939-47, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21634416

RESUMO

Denitrifying NO reductases are evolutionarily related to the superfamily of heme--copper terminal oxidases. These transmembrane protein complexes utilize a heme-nonheme diiron center to reduce two NO molecules to N(2)O. To understand this reaction, the diiron site has been modeled using sperm whale myoglobin as a scaffold and mutating distal residues Leu-29 and Phe-43 to histidines and Val-68 to a glutamic acid to create a nonheme Fe(B) site. The impact of incorporation of metal ions at this engineered site on the reaction of the ferrous heme with one NO was examined by UV-vis absorption, EPR, resonance Raman, and FTIR spectroscopies. UV--vis absorption and resonance Raman spectra demonstrate that the first NO molecule binds to the ferrous heme, but while the apoproteins and Cu(I)- or Zn(II)-loaded proteins show characteristic EPR signatures of S = 1/2 six-coordinate heme {FeNO}(7) species that can be observed at liquid nitrogen temperature, the Fe(II)-loaded proteins are EPR silent at ≥30 K. Vibrational modes from the heme [Fe-N-O] unit are identified in the RR and FTIR spectra using (15)NO and (15)N(18)O. The apo and Cu(I)-bound proteins exhibit ν(FeNO) and ν(NO) that are only marginally distinct from those reported for native myoglobin. However, binding of Fe(II) at the Fe(B) site shifts the heme ν(FeNO) by 17 cm(-1) and the ν(NO) by -50 cm(-1) to 1549 cm(-1). This low ν(NO) is without precedent for a six-coordinate heme {FeNO}(7) species and suggests that the NO group adopts a strong nitroxyl character stabilized by electrostatic interaction with the nearby nonheme Fe(II). Detection of a similarly low ν(NO) in the Zn(II)-loaded protein supports this interpretation.


Assuntos
Heme/metabolismo , Ferro/metabolismo , Mioglobina/química , Mioglobina/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Análise Espectral , Apoproteínas/química , Apoproteínas/metabolismo , Domínio Catalítico , Elétrons , Modelos Moleculares , Óxido Nítrico/metabolismo , Fotólise , Pseudomonas aeruginosa/enzimologia , Eletricidade Estática , Temperatura
5.
J Am Chem Soc ; 132(29): 9970-2, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20586490

RESUMO

A conserved 2-His-1-Glu metal center, as found in natural nonheme iron-containing enzymes, was engineered into sperm whale myoglobin by replacing Leu29 and Phe43 with Glu and His, respectively (swMb L29E, F43H, H64, called Fe(B)Mb(-His)). A high resolution (1.65 A) crystal structure of Cu(II)-CN(-)-Fe(B)Mb(-His) was determined, demonstrating that the unique 2-His-1-Glu metal center was successfully created within swMb. The Fe(B)Mb(-His) can bind Cu, Fe, or Zn ions, with both Cu(I)-Fe(B)Mb(-His) and Fe(II)-Fe(B)Mb(-His) exhibiting nitric oxide reductase (NOR) activities. Cu dependent NOR activity was significantly higher than that of Fe in the same metal binding site. EPR studies showed that the reduction of NO to N(2)O catalyzed by these two enzymes resulted in different intermediates; a five-coordinate heme-NO species was observed for Cu(I)-Fe(B)Mb(-His) due to the cleavage of the proximal heme Fe-His bond, while Fe(II)-Fe(B)Mb(-His) remained six-coordinate. Therefore, both the metal ligand, Glu29, and the metal itself, Cu or Fe, play crucial roles in NOR activity. This study presents a novel protein model of NOR and provides insights into a newly discovered member of the NOR family, gNOR.


Assuntos
Substituição de Aminoácidos , Ferro , Mioglobina/química , Mioglobina/metabolismo , Oxirredutases/metabolismo , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Mioglobina/genética , Conformação Proteica , Espectrofotometria Ultravioleta
6.
Proc Natl Acad Sci U S A ; 107(19): 8581-6, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20421510

RESUMO

A structural and functional model of bacterial nitric oxide reductase (NOR) has been designed by introducing two glutamates (Glu) and three histidines (His) in sperm whale myoglobin. X-ray structural data indicate that the three His and one Glu (V68E) residues bind iron, mimicking the putative Fe(B) site in NOR, while the second Glu (I107E) interacts with a water molecule and forms a hydrogen bonding network in the designed protein. Unlike the first Glu (V68E), which lowered the heme reduction potential by approximately 110 mV, the second Glu has little effect on the heme potential, suggesting that the negatively charged Glu has a different role in redox tuning. More importantly, introducing the second Glu resulted in a approximately 100% increase in NOR activity, suggesting the importance of a hydrogen bonding network in facilitating proton delivery during NOR reactivity. In addition, EPR and X-ray structural studies indicate that the designed protein binds iron, copper, or zinc in the Fe(B) site, each with different effects on the structures and NOR activities, suggesting that both redox activity and an intermediate five-coordinate heme-NO species are important for high NOR activity. The designed protein offers an excellent model for NOR and demonstrates the power of using designed proteins as a simpler and more well-defined system to address important chemical and biological issues.


Assuntos
Glutamatos/metabolismo , Metais/metabolismo , Mioglobina/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Engenharia de Proteínas , Substituição de Aminoácidos/genética , Animais , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Íons , Ferro/química , Ferro/metabolismo , Mioglobina/química , Óxido Nítrico/metabolismo , Oxirredução , Cachalote , Fatores de Tempo
7.
Nature ; 462(7276): 1079-82, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-19940850

RESUMO

Protein design provides a rigorous test of our knowledge about proteins and allows the creation of novel enzymes for biotechnological applications. Whereas progress has been made in designing proteins that mimic native proteins structurally, it is more difficult to design functional proteins. In comparison to recent successes in designing non-metalloproteins, it is even more challenging to rationally design metalloproteins that reproduce both the structure and function of native metalloenzymes. This is because protein metal-binding sites are much more varied than non-metal-containing sites, in terms of different metal ion oxidation states, preferred geometry and metal ion ligand donor sets. Because of their variability, it has been difficult to predict metal-binding site properties in silico, as many of the parameters, such as force fields, are ill-defined. Therefore, the successful design of a structural and functional metalloprotein would greatly advance the field of protein design and our understanding of enzymes. Here we report a successful, rational design of a structural and functional model of a metalloprotein, nitric oxide reductase (NOR), by introducing three histidines and one glutamate, predicted as ligands in the active site of NOR, into the distal pocket of myoglobin. A crystal structure of the designed protein confirms that the minimized computer model contains a haem/non-haem Fe(B) centre that is remarkably similar to that in the crystal structure. This designed protein also exhibits NO reduction activity, and so models both the structure and function of NOR, offering insight that the active site glutamate is required for both iron binding and activity. These results show that structural and functional metalloproteins can be rationally designed in silico.


Assuntos
Oxirredutases/química , Oxirredutases/síntese química , Animais , Cristalização , Ferro/metabolismo , Modelos Moleculares , Mioglobina/química , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
8.
Nature ; 460(7257): 855-62, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19675646

RESUMO

Metalloproteins catalyse some of the most complex and important processes in nature, such as photosynthesis and water oxidation. An ultimate test of our knowledge of how metalloproteins work is to design new metalloproteins. Doing so not only can reveal hidden structural features that may be missing from studies of native metalloproteins and their variants, but also can result in new metalloenzymes for biotechnological and pharmaceutical applications. Although it is much more challenging to design metalloproteins than non-metalloproteins, much progress has been made in this area, particularly in functional design, owing to recent advances in areas such as computational and structural biology.


Assuntos
Desenho de Fármacos , Metaloproteínas/química , Metaloproteínas/metabolismo , Biotecnologia , Enzimas/química , Enzimas/metabolismo , Conformação Proteica , Engenharia de Proteínas , Especificidade por Substrato
10.
J Am Chem Soc ; 128(21): 6766-7, 2006 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-16719438

RESUMO

The effects of metal ions on the reduction of nitric oxide (NO) with a designed heme copper center in myoglobin (F43H/L29H sperm whale Mb, CuBMb) were investigated under reducing anaerobic conditions using UV-vis and EPR spectroscopic techniques as well as GC/MS. In the presence of Cu(I), catalytic reduction of NO to N2O by CuBMb was observed with turnover number of 2 mol NO.mol CuBMb-1.min-1, close to 3 mol NO.mol enzyme-1.min-1 reported for the ba3 oxidases from T. thermophilus. Formation of a His-heme-NO species was detected by UV-vis and EPR spectroscopy. In comparison to the EPR spectra of ferrous-CuBMb-NO in the absence of metal ions, the EPR spectra of ferrous-CuBMb-NO in the presence of Cu(I) showed less-resolved hyperfine splitting from the proximal histidine, probably due to weakening of the proximal His-heme bond. In the presence of Zn(II), formation of a five-coordinate ferrous-CuBMb-NO species, resulting from cleavage of the proximal heme Fe-His bond, was shown by UV-vis and EPR spectroscopic studies. The reduction of NO to N2O was not observed in the presence of Zn(II). Control experiments using wild-type myoglobin indicated no reduction of NO in the presence of either Cu(I) or Zn(II). These results suggest that both the identity and the oxidation state of the metal ion in the CuB center are important for NO reduction. A redox-active metal ion is required to deliver electrons, and a higher oxidation state is preferred to weaken the heme iron-proximal histidine toward a five-coordinate key intermediate in NO reduction.


Assuntos
Cobre/metabolismo , Mioglobina/química , Mioglobina/metabolismo , Óxido Nítrico/metabolismo , Catálise , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Heme , Metais/química , Metais/metabolismo , Molibdênio/química , Molibdênio/metabolismo , Oxirredução , Oxirredutases/química , Oxirredutases/metabolismo , Engenharia de Proteínas/métodos
11.
Biochemistry ; 44(4): 1210-4, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15667214

RESUMO

The electrochemical properties of an engineered heme-copper center in myoglobin have been investigated by UV-visible spectroelectrochemistry. In the cyanide-bridged, spin-coupled heme-copper center in an engineered myoglobin, the presence of Zn(II) in the Cu(B) center raises the heme reduction potential from -85 to 49 mV vs NHE. However, in the cyanide-free, spin-decoupled derivative of the same protein, the presence of Zn(II) in the Cu(B) center exerts little influence on the heme reduction potentials (77 and 80 mV vs NHE, respectively, in the absence and in the presence of Zn(II)). Similar trends have also been observed when copper ion is present in the Cu(B) center, although on a smaller scale, due to reduction of Cu(II) to Cu(I) prior to heme reduction. These results show that the presence of a metal ion in the designed Cu(B) center has a significant effect on the redox potential of heme Fe only when the two metal centers are coupled through a bridging ligand between the two metal centers, indicating that spin coupling plays an important role in redox potential regulation. In addition, the presence of a single positively charged Cu(I) center in the Cu(B) center resulted in a much lower increase (16 mV) in heme reduction potential than that of two positively charged Zn(II) (118 mV). Therefore, the heme reduction potential must be lowered after the first electron transfer to reduce heme Fe(3+)-Cu(B)(2+) to Fe(3+)-Cu(B)(+). To raise the heme reduction potential to make the second electron transfer (i.e., reduction of Fe(3+)-Cu(B)(+) to Fe(2+)-Cu(B)(+)) to be favorable, most likely a proton or decoupling of the heme-copper center is needed in the heme-copper site. These findings provide a strong argument for a thermodynamic driving force basis for redox-regulated proton transfer in heme-copper oxidases.


Assuntos
Amina Oxidase (contendo Cobre)/química , Cobre/química , Heme/química , Mioglobina/química , Zinco/química , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Cátions Bivalentes/química , Bovinos , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/química , Heme/metabolismo , Histidina/genética , Leucina/genética , Mioglobina/síntese química , Mioglobina/genética , Oxirredução , Fenilalanina/genética , Potenciometria , Engenharia de Proteínas , Espectrofotometria Ultravioleta , Baleias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...