RESUMO
BACKGROUND: Granulosa cells play an important role in folliculogenesis, however, the role of RNA transcripts of granulosa cells in assessing embryo quality remains unclear. Therefore, we aims to investigate that RNA transcripts of granulosa cells be used to assess the probability of the embryonic developmental capacity. METHODS: This prospective cohort study was attempted to figure out the probability of the embryonic developmental capacity using RNA sequencing of granulosa cells. Granulosa cells were collected from 48 samples in good-quality embryo group and 79 in only poor- quality embryo group from women undergoing in vitro fertilization and embryo transfer treatment. Three samples from each group were used for RNA sequencing. RESULTS: 226 differentially expressed genes (DEGs) were related to high developmental competence of embryos. Gene Ontology enrichment analysis indicated that these DEGs were primarily involved in biological processes, molecular functions, and cellular components. Additionally, pathway analysis revealed that these DEGs were enriched in 13 Kyoto Encyclopedia of Genes and Genomes pathways. Reverse transcription quantitative polymerase chain reaction verified the differential expression of the 13 selected DEGs. Among them,10 genes were differently expressed in the poor-quality embryo group compared to good-quality embryo group, including CSF1R, CTSH, SERPINA1, CYP27A1, ITGB2, IL1ß, TNF, TAB1, BCL2A1, and CCL4. CONCLUSIONS: RNA sequencing data provide the support or confute granulosa expressed genes as non-invasive biomarkers for identifying the embryonic developmental capacity.
Assuntos
Transferência Embrionária , Líquido Folicular , Feminino , Humanos , Estudos Prospectivos , Fertilização in vitro , Células da Granulosa , Análise de Sequência de RNA , Perfilação da Expressão GênicaRESUMO
Asherman's syndrome (AS) is caused by intrauterine adhesions and inactive endometrium from repeated curettage of the uterine endometrium. AS is a major cause of recurrent implantation failure and miscarriage and is very difficult to treat because of the poor recovery of endometrial basal cells. Platelet-rich plasma (PRP) has abundant growth factors that may induce angiogenesis and cell proliferation. Here, we demonstrate that human PRP (hPRP) significantly enhances angiogenesis to restore embryo implantation, leading to successful pregnancy in mice with AS. In mice with AS, hPRP treatment considerably reduced the expression of fibrosis markers and alleviated oligo/amenorrhea phenotypes. Mice with AS did not produce any pups, but the hPRP therapy restored their infertility. AS-induced abnormalities, such as aberrantly delayed embryo implantation and intrauterine growth retardation, were considerably eliminated by hPRP. Furthermore, hPRP significantly promoted not only the elevation of various angiogenic factors, but also the migration of endometrial stromal cells. It also increased the phosphorylation of STAT3, a critical mediator of wound healing, and the expression of tissue remodeling genes in a fibrotic uterus. PRP could be a promising therapeutic strategy to promote angiogenesis and reduce fibrosis in impaired uterine environments, leading to successful embryo implantation for better clinical outcomes in patients with AS.
Assuntos
Ginatresia , Plasma Rico em Plaquetas , Animais , Implantação do Embrião , Feminino , Fibrose , Ginatresia/etiologia , Ginatresia/metabolismo , Ginatresia/terapia , Humanos , Camundongos , Neovascularização Patológica/metabolismo , Plasma Rico em Plaquetas/metabolismo , Gravidez , Útero/metabolismoRESUMO
Advanced maternal age (AMA) is known to be related to the decrease in the quality and quantity of oocytes. Oocyte vitrification is now considered an established assisted reproductive technology for fertility preservation. However, it remains unclear whether the oocytes in older women are more sensitive to various insults during vitrification. Thus, we evaluated whether AMA affects cellular and molecular features and developmental outcomes of oocytes after vitrification in mice. The oocytes were grouped as young fresh (YF), young vitrified/warmed (YV), aged fresh (AF), and aged vitrified/warmed (AV). The survival rate of AV oocytes was significantly lower than that of YV oocytes. The rates of fertilization, cleavage, and blastocyst formation of AV oocytes were significantly lower than those of other groups. AV oocytes were represented as aberrations in mitochondria distribution, microvacuole size, and autophagosome formation, leading to delayed embryo development in mice. This delay was associated with a reduced number of total cells and trophectoderm in the blastocyst developed from AV oocytes. Collectively, AMA exaggerates the vulnerability of oocytes to cryo-damage that occurs during vitrification in mice, suggesting that the current vitrification protocols optimized for oocytes from young females should be modified for oocytes from aged women.
Assuntos
Blastocisto/metabolismo , Criopreservação , Desenvolvimento Embrionário , Idade Materna , Oócitos/metabolismo , Animais , Feminino , Fertilização in vitro , Masculino , CamundongosRESUMO
The development of efficient light-harvesting systems is important to understand the key aspects of solar-energy conversion processes and to utilize them in various photonic applications. Here, atomically well-defined gold nanoclusters are reported as a new platform to fabricate artificial light-harvesting systems. An efficient amide coupling method is developed to synthesize water-soluble Au22 clusters fully protected with pyrene chromophores by taking advantage of their facile phase-transfer reaction. The synthesized Au22 clusters with densely packed 18 pyrene chromophores (Au22 -PyB18 ) exhibit triple-emission in blue, green, and red wavelength regions arising respectively from pyrene monomer, pyrene excimer, and Au22 emission, producing bright white light emission together. The photoluminescence of Au22 is enhanced by more than tenfold, demonstrating that pyrenes at the periphery efficiently channel the absorbed energy to the luminescent Au22 at the center. A combination of femtosecond transient absorption and anisotropy measurements of Au22 -PyB18 explicitly reveals three main decay components of 220 fs, 3.5 ps, and 160 ps that can be assigned to energy migration between pyrenes and energy transfer processes from pyrene monomer and excimer to the central Au22 , respectively.
Assuntos
Ouro , Luminescência , Anisotropia , Transferência de EnergiaRESUMO
BACKGROUND: Clinical use of mesenchymal stem cells (MSCs) requires a uniform cell population, and their harvesting is invasive and produces a limited number of cells. Human embryonic stem cell-derived MSCs (hESC-MSCs) can differentiate into three germ layers and possess immunosuppressive effects in vitro. Anticancer treatment is a well-known risk factor for premature ovarian failure (POF). In this study, we investigated the effect of hESC-MSC on recovery of ovarian function in cisplatin-induced POF in mice. METHODS: Female mice received intraperitoneal cisplatin for 10 days. On day 12, CHA15-derived hESC-MSCs were transplanted into the mice by tail vein injection. An injection of PBS served as the negative control. Ovaries were removed 28 days after transplantation for assessment of ovarian histology, immunostaining, and fertility testing by superovulation and in vitro fertilization. hESC-MSC transplantation into mice with cisplatin-induced damage restored body weight and ovary size. RESULTS: Mean primary and primordial follicle counts in the hESC-MSC group were significantly improved compared to the PBS group (P < 0.05), and counts of zona pellucida remnants, an apoptotic sign in ovarian follicles, were significantly reduced (P < 0.05). TUNEL assays and cleaved PARP immunostaining indicated apoptosis, which led to loss of ovarian stromal cells in negative control mice, while Ki-67 was higher in the hESC-MSC group and in non-cisplatin-treated controls than in the PBS group. Ovulation was reduced in the PBS group but recovered significantly in the hESC-MSC group. Rates of blastocyst formation from ovulated eggs and live births per mouse also recovered significantly in the hESC-MSC group. CONCLUSIONS: hESC-MSC restored structure and function in the cisplatin-damaged ovary. Our study provides new insights into the great clinical potential of human hESC-MSC in treating POF.
Assuntos
Células-Tronco Embrionárias Humanas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Insuficiência Ovariana Primária , Animais , Cisplatino/toxicidade , Feminino , Humanos , Camundongos , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/terapiaRESUMO
Peroxisome proliferator-activated receptor gamma (PPARγ) is known as a regulator of cellular functions, including adipogenesis and immune cell activation. The objectives of this study were to investigate the expression of PPARγ and identify the mechanism of primordial follicle activation via PPARγ modulators in mouse ovaries. We first measured the gene expression of PPARγ and determined its relationship with phosphatase and tensin homolog (PTEN), protein kinase B (AKT1), and forkhead box O3a (FOXO3a) expression in neonatal mouse ovaries. We then incubated neonatal mouse ovaries with PPARγ modulators, including rosiglitazone (a synthetic agonist of PPARγ), GW9662 (a synthetic antagonist of PPARγ), and cyclic phosphatidic acid (cPA, a physiological inhibitor of PPARγ), followed by transplantation into adult ovariectomized mice. After the maturation of the transplanted ovaries, primordial follicle growth activation, follicle growth, and embryonic development were evaluated. Finally, the delivery of live pups after embryo transfer into recipient mice was assessed. While PPARγ was expressed in ovaries from mice of all ages, its levels were significantly increased in ovaries from 20-day-old mice. In GW9662-treated ovaries in vitro, PTEN levels were decreased, AKT was activated, and FOXO3a was excluded from the nuclei of primordial follicles. After 1 month, cPA-pretreated, transplanted ovaries produced the highest numbers of oocytes and polar bodies, exhibited the most advanced embryonic development, and had the greatest blastocyst formation rate compared to the rosiglitazone- and GW9662-pretreated groups. Additionally, the successful delivery of live pups after embryo transfer into the recipient mice transplanted with cPA-pretreated ovaries was confirmed. Our study demonstrates that PPARγ participates in primordial follicle activation and development, possibly mediated in part by the PI3K/AKT signaling pathway. Although more studies are required, adapting these findings for the activation of human primordial follicles may lead to treatments for infertility that originates from poor ovarian reserves.
Assuntos
Anilidas/farmacologia , Folículo Ovariano/citologia , PPAR gama/genética , Ácidos Fosfatídicos/farmacologia , Rosiglitazona/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Proteína Forkhead Box O3/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/transplante , PPAR gama/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de SinaisRESUMO
Repetitive changes in the intracellular calcium concentration ([Ca2+]i) triggers egg activation, including cortical granule exocytosis, resumption of second meiosis, block to polyspermy, and initiating embryonic development. [Ca2+]i oscillations that continue for several hours, are required for the early events of egg activation and possibly connected to further development to the blastocyst stage. The sources of Ca2+ ion elevation during [Ca2+]i oscillations are Ca2+ release from endoplasmic reticulum through inositol 1,4,5 tri-phosphate receptor and Ca2+ ion influx through Ca2+ channel on the plasma membrane. Ca2+ channels have been characterized into voltage-dependent Ca2+ channels (VDCCs), ligand-gated Ca2+ channel, and leak-channel. VDCCs expressed on muscle cell or neuron is specified into L, T, N, P, Q, and R type VDCs by their activation threshold or their sensitivity to peptide toxins isolated from cone snails and spiders. The present study was aimed to investigate the localization pattern of N and P/Q type voltage-dependent calcium channels in mouse eggs and the role in fertilization. [Ca2+]i oscillation was observed in a Ca2+ contained medium with sperm factor or adenophostin A injection but disappeared in Ca2+ free medium. Ca2+ influx was decreased by Lat A. N-VDCC specific inhibitor, ω-Conotoxin CVIIA induced abnormal [Ca2+]i oscillation profiles in SrCl2 treatment. N or P/Q type VDC were distributed on the plasma membrane in cortical cluster form, not in the cytoplasm. Ca2+ influx is essential for [Ca2+]i oscillation during mammalian fertilization. This Ca2+ influx might be controlled through the N or P/Q type VDCCs. Abnormal VDCCs expression of eggs could be tested in fertilization failure or low fertilization eggs in subfertility women.
RESUMO
The ability of oocytes to undergo normal fertilization and embryo development is acquired during oocyte maturation which is transition from the germinal vesicle stage (GV), germinal vesicle breakdown (GVBD) to metaphase of meiosis II (MII). Part of this process includes redistribution of inositol 1,4, 5-triphosphate receptor (IP3R), a predominant Ca2+ channel on the endoplasmic reticulum membrane. Type 1 IP3R (IP3R1) is expressed in mouse oocytes dominantly. At GV stage, IP3R1 are arranged as a network throughout the cytoplasm with minute accumulation around the nucleus. At MII stage, IP3R1 diffuses to the entire cytoplasm in a more reticular manner, and obvious clusters of IP3R1 are observed at the cortex of the egg. This structural reorganization provides acquisition of [Ca2+]i oscillatory activity during fertilization. In this review, general properties of IP3R1 in somatic cells and mammalian oocyte are introduced.
RESUMO
With the progress of regenerative medicine, mesenchymal stem cells (MSCs) have received attention as a way to restore ovarian function. It has been reported that MSCs derived from bone marrow, adipose, umbilical cord blood, menstrual blood, and amniotic fluid improved ovarian function. In light of previous studies and advances in this field, there are increased expectations regarding the utilization of MSCs to restore ovarian function. This review summarizes recent research into potential applications of MSCs in women with infertility or primary ovarian insufficiency, including cases where these conditions are induced by anticancer therapy.
RESUMO
This study investigates the possible causes for low development of blastocysts in vitrified immature oocytes by evaluating the changes of mitochondrial membrane potential and reactive oxygen species (ROS) production and finds a recovery mechanism for these conditions in vitrified immature oocytes. To recover from the cryoinjury, we cultured vitrified immature oocytes in milrinone containing medium for 1, 3, and 5 hours and then extended the culture for oocyte maturation. There was no difference in in vitro maturation and fertilization rate between fresh and vitrified/warmed oocytes. However, the development rate of blastocysts in vitrified/warmed oocytes was significantly lower than that in fresh oocytes (p < 0.05). The development rate of blastocysts was recovered if these oocytes were cultured for 3 hours in milrinone. Vitrified/warmed oocytes incubated in milrinone for 0 and 1 hour showed a significantly higher level of ROS (p < 0.05) and a significantly lower mitochondrial membrane potential (p < 0.05) than fresh oocytes. However, there was no significant difference (p > 0.05) between vitrified oocytes incubated in milrinone for 3 hours and fresh oocytes in terms of ROS level and mitochondrial membrane potential. In conclusion, alteration of highly polarized mitochondria distribution in vitrified oocytes may have an effect on mitochondrial activity, including ROS production during fertilization and further development. Preincubation in milrinone before in vitro maturation of immature vitrified/warmed oocytes may help the redistribution of highly polarized mitochondrial inner membrane potential and in reducing ROS and enhance the further embryonic development after fertilization.
Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Vitrificação , Animais , Crioprotetores/farmacologia , Feminino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/metabolismoRESUMO
Levels of maturation-promoting factor (MPF) in oocytes decline after vitrification, and this decline has been suggested as one of the main causes of low developmental competence resulting from cryoinjury. Here, we evaluated MPF activity in vitrified mouse eggs following treatment with caffeine, a known stimulator of MPF activity, and/or the proteasome inhibitor MG132. Collected MII oocytes were vitrified and divided into four groups: untreated, 10 mM caffeine (CA), 10 µM MG132 (MG), and 10 mM caffeine +10 µM MG132 (CA+MG). After warming, the MPF activity of oocytes and their blastocyst formation and implantation rates in the CA, MG, and CA+MG groups were much higher than those in the untreated group. However, the cell numbers in blastocysts did not differ among groups. Analysis of the effectiveness of caffeine and MG132 for improving somatic cell nuclear transfer (SCNT) technology using cryopreserved eggs showed that supplementation did not improve the blastocyst formation rate of cloned mouse eggs. These results suggest that maintaining MPF activity after cryopreservation may have a positive effect on further embryonic development, but is unable to fully overcome cryoinjury. Thus, intrinsic factors governing the developmental potential that diminish during oocyte cryopreservation should be explored.
Assuntos
Blastocisto/efeitos dos fármacos , Cafeína/farmacologia , Leupeptinas/farmacologia , Fator Promotor de Maturação/metabolismo , Oócitos/metabolismo , Animais , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Fertilização in vitro , Mesotelina , Camundongos , Técnicas de Transferência Nuclear , Oócitos/efeitos dos fármacos , Gravidez , Regulação para Cima , VitrificaçãoRESUMO
Gold nanoclusters are emerging as new materials for biomedical applications because of promises offered by their ultrasmall size and excellent biocompatibility. Here, the synthesis and optical and biological characterizations of a highly luminescent folate-functionalized Au22 cluster (Au22 -FA) are reported. The Au22 -FA clusters are synthesized by functionalizing the surface of Au22 (SG)18 clusters, where SG is glutathione, with benzyl chloroformate and folate. The functionalized clusters are highly water-soluble and exhibit remarkably bright luminescence with a quantum yield of 42%, significantly higher than any other water-soluble gold clusters protected with thiolate ligands. The folate groups conjugated to the gold cluster give rise to additional luminescence enhancement by energy transfer sensitization. The brightness of Au22 -FA is found to be 4.77 mM-1 cm-1 , nearly 8-fold brighter than that of Au22 (SG)18 . Further biological characterizations have revealed that the Au22 -FA clusters are well-suited for bioimaging. The Au22 -FA clusters exhibit excellent photostability and low toxicity; nearly 80% cell viability at 1000 ppm of the cluster. Additionally, the Au22 -FA clusters show target specificity to folate-receptor positive cells. Finally, the time-course in vivo luminescence images of intravenous-injected mice show that the Au22 -FA clusters are renal-clearable, leaving only 8% of them remained in the body after 24 h post-injection.
Assuntos
Ácido Fólico/química , Ouro/química , Substâncias Luminescentes/química , Nanopartículas Metálicas/química , Imagem Molecular/métodos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ácido Fólico/farmacocinética , Glutationa/química , Glutationa/farmacocinética , Glutationa/toxicidade , Ouro/farmacocinética , Humanos , Substâncias Luminescentes/farmacocinética , Substâncias Luminescentes/toxicidade , Nanopartículas Metálicas/toxicidade , Camundongos , NanomedicinaRESUMO
We report design strategies for the preparation of highly luminescent Au22(SG)18 clusters, where SG is glutathione, by the functionalization of the cluster shell. In these strategies, the cluster shell was covalently modified with small aromatic molecules and pyrene chromophores that led to a 5-fold PL enhancement by rigidifying the shell-gold. Highly luminescent water-soluble gold clusters with a PL quantum yield of 30% were obtained at room temperature. To further enhance the luminescence, the pyrene chromophores in the functionalized Au22 clusters were photoexcited at 350 nm to induce energy transfer from pyrene to the Au22 cluster. Steady-state and time-resolved PL measurements have shown evidence of enhanced rigidity with increased PL lifetimes for the functionalized Au22 clusters. However, the energy transfer efficiency was found to be only 14% because of the competing electron transfer deactivation pathway as evidenced by the formation of the pyrene anion radical revealed in the ultrafast transient absorption measurements. To suppress the electron transfer pathway, the pyrene functionalized Au22 clusters were ion-paired with tetraoctylammonium (TOA) cations that could break the electron transfer pathway, leading to a dramatic 37-fold increase in PL brightness with the resonance energy transfer efficiency of ca. 80%. This work presents effective design strategies for the preparation of highly luminescent gold clusters by the combination of rigidifying effect and energy transfer sensitization.
RESUMO
Estrogen-related receptor ß (ESRRB), which is a member of the nuclear orphan receptor family, regulates the messenger RNA (mRNA) expression levels of the transcription factors, Oct4 and Nanog, in early embryos and germ cells, thereby maintaining the undifferentiated state and pluripotency of the relevant cells. The present study was designed to determine whether the upregulation of pluripotency-related genes by direct delivery of ESRRB protein may affect on the commitment into inner cell mass (ICM) or the development of vitrified/warmed mouse embryos. Recombinant cell-penetrating peptide (CPP) ESRRB protein was synthesized and then added into a culture medium for cryopreserved mouse embryos. Vitrified/warmed 8-cell embryos were cultured in KSOM with/without 2 µg/mL CPP-ESRRB for 48 hours and then analyzed or transferred to the uteri of foster mothers. The mRNA expression of Oct4 and Nanog was higher in CPP-ESRRB-treated blastocysts compared to the untreated controls. No difference was observed in embryonic development, but ICM:trophectoderm ratio was increased in the CPP-ESRRB-treated group compared to the untreated group, and after embryo transfer, a higher implantation rate was obtained in the CPP-ESRRB-treated group compared to the untreated group. This study shows for the first time that recombinant CPP-ESRRB can be easily integrated into vitrified/warmed mouse embryos and that it increases Oct4 expression (via a pluripotency-related gene pathway), ICM formation, and the further embryonic and full-term development of vitrified/warmed mouse embryos. This CPP-conjugated protein delivery system could therefore be a useful tool for improving assisted reproductive technology.
Assuntos
Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Peptídeos Penetradores de Células/administração & dosagem , Desenvolvimento Embrionário , Estrogênios Conjugados (USP)/administração & dosagem , Receptores de Estrogênio/administração & dosagem , Animais , Contagem de Células , Meios de Cultura , Implantação do Embrião/efeitos dos fármacos , Transferência Embrionária , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , RNA Mensageiro/metabolismo , VitrificaçãoRESUMO
Fertilization in mammals is initiated when a sperm fuses with a mature MII oocyte, also known as egg, and triggers a plethora of finely controlled processes identified as egg activation. The completion of all events of egg activation is driven by and depends on a series of repetitive calcium (Ca(2+)) increases (Ca(2+) oscillations), which rely on Ca(2+) influx from the extracellular media. Ca(2+) channels on the egg plasma membrane (PM) are thought to mediate this influx. The TRP Ca(2+) channel TRPV3 is differentially expressed during oocyte maturation, being most active at the MII stage. Specific stimulation of TRPV3 channels promotes Ca(2+) influx sufficient to induce egg activation and parthenogenesis. Here, we explore the function and distribution dynamics of the TRPV3 channel protein during maturation. Using dsRNA, TrpV3 overexpression, and inhibitors of protein synthesis, we modified the expression levels of the channel and showed that the TRPV3 protein is synthesized and translocated to the PM during maturation. We demonstrated that 2-APB at the concentrations used here to promote Ca(2+) influx in eggs, specifically and reversibly targets TRPV3 channels without blocking IP3R1. Finally, we found that the activity of TRPV3 channels is dependent upon an intact actin cytoskeleton, suggesting an actin-based regulation of its expression and/or function on the PM. Collectively, our results show TRPV3 is a target of 2-APB in eggs, a condition that can be used to induce parthenogenesis. The need of an intact actin cytoskeleton for the function of TRPV3 channels in oocytes is a novel finding and suggests the rearrangements of actin that occur during maturation could regulate both the presence on the PM and/or the function of TRPV3 and of other Ca(2+) channels involved in oocyte maturation and fertilization.
Assuntos
Compostos de Boro/farmacologia , Cálcio/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Canais de Cátion TRPV/fisiologia , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Feminino , Camundongos , Canais de Cátion TRPV/antagonistas & inibidoresRESUMO
The type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) mediates increases in the intracellular concentration of Ca(2+) ([Ca(2+)]i) during fertilization in mammalian eggs. The activity of IP3R1 is enhanced during oocyte maturation, and phosphorylations by M-phase kinases are thought to positively regulate the activity of IP3R1. Accordingly, we and others have found that IP3R1 is phosphorylated at S(421), T(799) (by Cdk1) and at S(436) (by ERK). Nevertheless, the effects of these phosphorylations on the function of the receptor and their impact on [Ca(2+)]i oscillations in eggs have not been clearly examined. To address this, we expressed in mouse oocytes an IP3R1 variant with the three indicated phosphorylation sites replaced by acidic residues, IIIE-IP3R1, such that it would act like a constitutively phosphorylated IP3R1, and examined [Ca(2+)]i parameters in response to stimuli. We found that overexpression of wild type (wt-IP3R1) or IIIE-IP3R1 in oocytes containing endogenous receptors caused dominant negative-like effects on Ca(2+) release and oscillations. Therefore, we first selectively removed the endogenous IP3R1, and subsequently expressed the exogenous receptors. We found that in response to injection of PLCζ cRNA, eggs without endogenous IP3R1 failed to mount persistent Ca(2+) oscillations, although expression of wt-IP3R1 restored their [Ca(2+)]i oscillatory activity. We also observed that the Ca(2+) oscillatory ability and the sensitivity to IP3 in eggs expressing IIIE-IP3R1 were greater than in those expressing wt-IP3R1. Lastly, we found that exogenous IP3R1s are resistant to downregulation and support longer oscillations and of higher amplitude. Altogether, our results show that phosphorylations by Cdk1 and MAPK enhance the activity of IP3R1, which is consistent with its maximal activity observed at the time of fertilization and the role of Ca(2+) release in egg activation.
Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Divisão Celular , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Oócitos/metabolismo , Animais , Feminino , Camundongos , FosforilaçãoRESUMO
OBJECTIVE: Estrogen related receptor ß (Esrrb) is a member of the orphan nuclear receptors and may regulate the expression of pluripotency-related genes, such as Oct4 and Nanog. Therefore, in the present study, we have developed a method for delivering exogenous ESRRB recombinant protein into embryos by using cell-penetrating peptide (CPP) conjugation and have analyzed their effect on embryonic development. METHODS: Mouse oocytes and embryos were obtained from superovulated mice. The expression of Oct4 mRNA and the cell number of inner cell mass (ICM) in the in vitro-derived and in vivo-derived blastocysts were first analyzed by real time-reverse transcription-polymerase chain reaction and differential staining. Then 8-cell embryos were cultured in KSOM media with or without 2 µg/mL CPP-ESRRB protein for 24 to 48 hours, followed by checking their integration into embryos during in vitro culture by Western blot and immunocytochemistry. RESULTS: Expression of Oct4 and the cell number of ICM were lower in the in vitro-derived blastocysts than in the in vivo-derived ones (p<0.05). In the blastocysts derived from the CPP-ESRRB-treated group, expression of Oct4 was greater than in the non-treated groups (p<0.05). Although no difference in embryonic development was observed between the treated and non-treated groups, the cell number of ICM was greater in the CPP-ESRRB-treated group. CONCLUSION: Treatment of CPP-ESRRB during cultivation could increase embryos' expression of Oct4 and the formation rate of the ICM in the blastocyst. Additionally, an exogenous delivery system of CPP-conjugated protein would be a useful tool for improving embryo culture systems.
RESUMO
The aim of this study was to evaluate the effectiveness of improving angiogenesis at graft sites on the survival of follicles in transplanted ovarian tissue. Matrigel containing 5 × 105 of cord blood-derived endothelial progenitor cells (EPCs) or 200 ng of mouse vascular endothelial growth factor (VEGF) was injected subcutaneously into BALB/c-Nu mice. After 1 week, vitrified/warmed ovaries from female B6D2F1 mice were subcutaneously transplanted into the injection sites. After 1, 2, and 4 weeks posttransplantation, the ovaries were recovered and subjected to histological analysis. Oocytes were collected from the transplanted ovaries, and their fertilization, embryonic development, and delivery were also observed. Vitrified/warmed ovaries transplanted into EPC- or VEGF-treated sites developed more blood vessels and showed better follicle survival than those transplanted into sham-injected sites. Normal embryonic development and consequent live births were obtained using oocytes recovered from cryopreserved/transplanted ovaries. Treatment with EPCs or VEGF could prevent the ischemic damage during the early revascularization stage of ovarian transplantation.
RESUMO
We report on the development of a liquid crystalline block copolymer with brush-type architecture as a platform for creating functional materials by magnetic-field-directed self-assembly. Ring-opening metathesis of n-alkyloxy cyanobiphenyl and polylactide (PLA) functionalized norbornene monomers provides efficient polymerization yielding low polydispersity block copolymers. The mesogenic species, spacer length, monomer functionality, brush-chain length, and overall molecular weight were chosen and optimized to produce hexagonally packed cylindrical PLA domains which self-assemble and align parallel to an applied magnetic field. The PLA domains can be selectively removed by hydrolytic degradation resulting in the production of nanoporous films. The polymers described here provide a versatile platform for scalable fabrication of aligned nanoporous materials and other functional materials based on such templates.
RESUMO
Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50µM) for different durations. When late 2-cells were incubated with 5µM fluoxetine for 6h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5µM) over 24h showed a reduction in blastocyst formation. The addition of fluoxetine (5µM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K(+) channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ~30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating.