Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37444932

RESUMO

U-Mo alloys were considered to be the most promising candidates for high-density nuclear fuel. The uniaxial tensile behavior of nanocrystalline U-10Mo alloys with average grain sizes of 8-23 nm was systematically studied by molecular dynamics (MD) simulation, mainly focusing on the influence of average grain size on the mechanical properties and deformation mechanisms. The results show that Young's modulus, yield strength and ultimate tensile strength follow as average grain size increases. During the deformation process, localized phase transitions were observed in samples. Grain boundary sliding and grain rotation, as well as twinning, dominated the deformation in the smaller and larger grain sizes samples, respectively. Increased grain size led to greater localized shear deformation, resulting in greater stress drop. Additionally, we elucidated the effects of temperature and strain rate on tensile behavior and found that lower temperatures and higher strain rates not only facilitated the twinning tendency but also favored the occurrence of phase transitions in samples. Results from this research could provide guidance for the design and optimization of U-10Mo alloys materials.

2.
Sci Rep ; 12(1): 22034, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539589

RESUMO

Current work focuses on fabricating a new bio-nano adsorbent of Fe3O4@inulin nanocomposite via an in-situ co-precipitation procedure to adsorb methyl orange (MO) and crystal violet (CV) dyes from aqueous solutions. Different physical characterization analyses verified the successful fabrication of the magnetic nanocomposite. The adsorbent performance in dye removal was evaluated by varying initial dye concentration, adsorbent dosage, pH and temperature in 5110 mg/L, 0.10.8 g/L, 111 and 283-338 K, respectively. Due to the pH of zero point of charge and intrinsic properties of dyes, the optimum pHs were 5 and 7 for MO and CV adsorption, respectively. The correlation of coefficient (R2) and reduced chi-squared value were the criteria in order to select the best isotherm and kinetics models. The Langmuir model illustrated a better fit for the adsorption data for both dyes, demonstrating the maximum adsorption capacity of 276.26 and 223.57 mg/g at 338 K for MO and CV, respectively. As well, the pseudo-second-order model showed a better fitness for kinetics data compared to the pseudo-first-order and Elovich models. The thermodynamic parameters exhibited that the dye adsorption process is endothermic and spontaneous, which supported the enhanced adsorption rate by increasing temperature. Moreover, the nanocomposite presented outstanding capacity and stability after 6 successive cycles by retaining more than 87% of its initial dye removal efficiency. Overall, the magnetized inulin with Fe3O4 could be a competent adsorbent for eliminating anionic and cationic dyes from water.


Assuntos
Corantes , Poluentes Químicos da Água , Corantes/química , Água , Violeta Genciana/química , Inulina , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química , Indicadores e Reagentes , Adsorção , Cinética
3.
ACS Omega ; 7(48): 43847-43855, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506120

RESUMO

The sealing quality of the gas extraction holes determines the extracted gas concentration. Based on this, the paper reveals the basic principle of hole sealing by analyzing the gas leakage mechanism of the borehole. The hole sealing technology of solid-liquid materials with three pluggings and two injections for the gas extraction hole is proposed, and the hole sealing device and material are developed. Through testing the granularity distribution of the solid material, as well as the surface tension and contact angle of the slurry, the hole sealing material that can meet the requirements of accessible, sticky, and anti-deformation is selected. The sealing material enters microcracks and bonds coal rock more easily. First, the solid material is injected for hole sealing. Second, the liquid material can be injected repeatedly to maintain a high concentration for holes with poor sealing and gas concentration attenuation in the late stage of gas extraction. Field tests show that the gas concentration of solid material is 1.3 times that of the conventional material after 30 days of sealing. The liquid material injected after the concentration decline enables the gas extraction concentration to be recovered at 85%.

4.
Water Res ; 214: 118172, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35196620

RESUMO

Permeability reduction and formation damage in porous media caused by fines (defined as unconfined solid particles present in the pore spaces) migration is one of the major reasons for productivity decline. It is well accepted that particle detachment occurs under imbalanced torques arising from hydrodynamic and adhesive forces exerted on attached particles. This paper reviewed current understanding on primary factors influencing fines migration as well as mathematical formulations for quantification. We also introduced salinity-related experimental observations that contradict theoretical predictions based on torque balance criteria, such as delayed particle release and attachment-detachment hysteresis. The delay of particle release during low-salinity water injection was successfully explained and formulated by the Nernst-Planck diffusion of ions in a narrow contact area. In addition to the widely recognized explanation by surface heterogeneity and the presence of low-velocity regions, we proposed a hypothesis that accounts for the shifting of equilibrium positions, providing new insight into the interpretation of elusive attachment-detachment hysteresis both physically and mathematically. The review was finalized by discussing the quantification of anomalous salinity effect on adhesion force at low- and high-salinity conditions.

5.
Phys Rev E ; 103(4-1): 043306, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005930

RESUMO

There has been active development of numerical pore-network simulation of two-phase immiscible flows in porous media in recent years. These models allow for generation of capillary pressure and relative permeability curves. However, percolation models provide an efficient alternative, with reduced reliance on numerical techniques. Implementation of effective medium or critical path theory along with the percolation model allows for evaluation of the relative permeability curves. Both approximations failed to match the irreducible water saturation for water relative permeability. While the effective medium approximation poorly matches the pore network simulator, the critical path approximation is shown to match the result of the oil relative permeability. Despite the difference in end points, there is qualitative agreement between critical path approximation and the pore network simulator. Moreover, observed differences are not necessarily a drawback due to important boundary effects as discussed in the paper. Our results indicate that percolation-theory based predictions have the potential to become an efficient tool for upscaling by computing two-phase flow properties for numerous porosity subdomains.

6.
ACS Omega ; 5(31): 19565-19578, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32803051

RESUMO

Coalbed is the carrier for coalbed methane (CBM) enrichment and migration. The pore structure characteristics of coal and their main geological controlling factors are critical to the exploration and development of CBM. In this paper, 20 coal samples were collected from eastern Yunnan and western Guizhou, China. Based on vitrinite reflectance, proximate analysis, maceral analysis, and low-temperature N2 adsorption/desorption (LT-N2GA) experiments, the hysteresis coefficient of low-temperature N2 desorption was proposed, the types of pore structure were identified, and the effects of coal facies and rank on the pore structure were revealed. The results show that the R o,max values of the 20 coal samples are between 0.74 and 3.38%, which belong to medium- and high-rank coal. In the coal macerals, the vitrinite is mainly collodetrinite. The inertinite is dominated by semifusinite, and some coal samples contain exinite. The coal samples investigated can be divided into two types. Type A samples mainly contain open pores, while type B samples are rich in bottle-shaped pores. Compared with type A coal samples, type B samples have the characteristics of smaller total pore volume (TPV), smaller average pore diameter (APD), larger specific surface area (SSA), and larger hysteresis coefficient. The coal samples are located in three regions of different coal facies, including low-level swamp (reed) facies, wetland herbaceous swamp facies, and wet forest swamp facies. The tissue preservation index (TPI) values of most coal samples are less than unity, which indicates that herbaceous plants have absolute dominance in the coal-forming plants in eastern Yunnan and western Guizhou. The maximum vitrinite reflectance (R o,max), gelification index (GI), TPI, vitrinite content (V), inertinite content (I), Barrett-Joyner-Halenda pore volume (V BJH), Brunauer-Emmett-Teller SSA (S BET), and low-temperature N2 desorption total hysteresis coefficient (H t) were clustered using the R-type cluster analysis method. It is found that TPI is the main controlling factor of the pore structure of type A coal samples, while the pore structure of type B coal samples are jointly controlled by TPI and coal rank. Type B coal samples are mainly located in Zhuzang and Laochang high-rank coal research areas, while the distribution of type A coal samples is mainly in other medium-high-rank coal research areas. These results will contribute to the exploration and development of CBM and also guide the study of pore structures of other unconventional gas reservoirs.

7.
Rev Sci Instrum ; 85(1): 015111, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24517816

RESUMO

A detailed uncertainty analysis associated with carboxyl-modified latex particle capture in glass bead-formed porous media enabled verification of the two theoretical stochastic models for prediction of particle retention due to size exclusion. At the beginning of this analysis it is established that size exclusion is a dominant particle capture mechanism in the present study: calculated significant repulsive Derjaguin-Landau-Verwey-Overbeek potential between latex particles and glass beads is an indication of their mutual repulsion, thus, fulfilling the necessary condition for size exclusion. Applying linear uncertainty propagation method in the form of truncated Taylor's series expansion, combined standard uncertainties (CSUs) in normalised suspended particle concentrations are calculated using CSUs in experimentally determined parameters such as: an inlet volumetric flowrate of suspension, particle number in suspensions, particle concentrations in inlet and outlet streams, particle and pore throat size distributions. Weathering of glass beads in high alkaline solutions does not appreciably change particle size distribution, and, therefore, is not considered as an additional contributor to the weighted mean particle radius and corresponded weighted mean standard deviation. Weighted mean particle radius and LogNormal mean pore throat radius are characterised by the highest CSUs among all experimental parameters translating to high CSU in the jamming ratio factor (dimensionless particle size). Normalised suspended particle concentrations calculated via two theoretical models are characterised by higher CSUs than those for experimental data. The model accounting the fraction of inaccessible flow as a function of latex particle radius excellently predicts normalised suspended particle concentrations for the whole range of jamming ratios. The presented uncertainty analysis can be also used for comparison of intra- and inter-laboratory particle size exclusion data.

8.
Rev Sci Instrum ; 83(9): 095106, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23020418

RESUMO

Using the law of propagation of uncertainties we show how equipment- and measurement-related uncertainties contribute to the overall combined standard uncertainties (CSU) in filter permeability and in modelling the results for polystyrene latex microspheres filtration through a borosilicate glass filter at various injection velocities. Standard uncertainties in dynamic viscosity and volumetric flowrate of microspheres suspension have the greatest influence on the overall CSU in filter permeability which excellently agrees with results obtained from Monte Carlo simulations. Two model parameters "maximum critical retention concentration" and "minimum injection velocity" and their uncertainties were calculated by fitting two quadratic mathematical models to the experimental data using a weighted least squares approximation. Uncertainty in the internal cake porosity has the highest impact on modelling uncertainties in critical retention concentration. The model with the internal cake porosity reproduces experimental "critical retention concentration vs velocity"-data better than the second model which contains the total electrostatic force whose value and uncertainty have not been reliably calculated due to the lack of experimental dielectric data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...