Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(12): 3470-3477, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38512331

RESUMO

The photosystem of filamentous anoxygenic phototroph Roseiflexus (Rfl.) castenholzii comprises a light-harvesting (LH) complex encircling a reaction center (RC), which intensely absorbs blue-green light by carotenoid (Car) and near-infrared light by bacteriochlorophyll (BChl). To explore the influence of light quality (color) on the photosynthetic activity, we compared the pigment compositions and triplet excitation dynamics of the LH-RCs from Rfl. castenholzii was adapted to blue-green light (bg-LH-RC) and to near-infrared light (nir-LH-RC). Both LH-RCs bind γ-carotene derivatives; however, compared to that of nir-LH-RC (12%), bg-LH-RC contains substantially higher keto-γ-carotene content (43%) and shows considerably faster BChl-to-Car triplet excitation transfer (10.9 ns vs 15.0 ns). For bg-LH-RC, but not nir-LH-RC, selective photoexcitation of Car and the 800 nm-absorbing BChl led to Car-to-Car triplet transfer and BChl-Car singlet fission reactions, respectively. The unique excitation dynamics of bg-LH-RC enhances its photoprotection, which is crucial for the survival of aquatic anoxygenic phototrophs from photooxidative stress.


Assuntos
Chloroflexi , Chloroflexi/química , Chloroflexi/metabolismo , Carotenoides , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Bacterioclorofilas/metabolismo , Proteínas de Bactérias/química
2.
J Phys Chem Lett ; 15(13): 3619-3626, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38530255

RESUMO

The light-harvesting (LH) and reaction center (RC) core complex of purple bacterium Roseiflexus castenholzii, B880-B800-RC, are different from those of the typical photosynthetic unit, (B850-B800)x-B880-RC. To investigate the excitation flowing dynamics in this unique complex, two-dimensional electronic spectroscopy is employed. The obtained time constants for the exciton relaxation in B880, exciton relaxation in B800, B800 → B880 energy transfer (EET), and B880 → closed RC EET are 43 fs, 177 fs, 1.9 ps, and 205 ps, respectively. These time constants result in an overall EET efficiency similar to that of the typical photosynthetic unit. Analysis of the oscillatory signals reveals that while several vibronic coherences are involved in the exciton relaxation process, only one prominent vibronic coherence, with a frequency of 27 cm-1 and coupled to the B880 electronic transition, may contribute to the B800 → B880 EET process.

3.
J Phys Chem Lett ; 14(18): 4233-4240, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37126526

RESUMO

Singlet fission (SF) presents an attractive solution to overcome the Shockley-Queisser limit of single-junction solar cells. The conversion from an initial singlet state to final triplet is mediated by the correlated triplet pair state 1(T1T1). Despite significant advancement on 1(T1T1) properties and its role in SF, a comprehensive understanding of the energetic landscape during SF is still unclear. Here, we study an unconventional SF system with excited-state aromaticity, i.e., cyano-substituted dipyrrolonaphtheridinedione derivative (DPND-CN), using time-resolved spectroscopy as a function of the temperature. We demonstrate that the population transfer from S1 to 1(T1T1) is driven by a time-dependent exothermicity resulting from the coherent coupling between electronic and spin degrees of freedom. This is followed by thermal-activated dissociation of 1(T1T1) to yield free triplets. Our results provide some new insight into the SF mechanism, which may guide the development of new efficient and stable SF materials for practical applications.

4.
J Chem Phys ; 154(21): 214502, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34240983

RESUMO

Quantum dephasing of excitonic transitions in CsPbBr3 nanocrystals has been studied using two-dimensional electronic spectroscopy at cryogenic temperatures. The exciton-phonon interactions for acoustic and optical modes exhibit different effects on the coherent dynamics of excitonic transitions. The homogeneous linewidth shows a proportional dependence on the temperature, suggesting the primary dephasing channel of the elastic scattering between exciton and acoustic modes. The exciton-optical mode interaction is manifested as the beatings of off-diagonal signals in the population time domain at the frequencies of 29 and 51 cm-1, indicating phonon replicas of excitonic transitions arising from coherent exciton-phonon interaction. The insight information of exciton homogeneous broadening in perovskite nanocrystals is essential for the potential application of quantum light sources.

5.
J Phys Chem Lett ; 12(1): 238-244, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33326243

RESUMO

The lifetimes of hot carriers have been predicted to be prolonged in small nanocrystals with an inter-level spacing larger than phonon energy. Nevertheless, whether such a phonon bottleneck is present in perovskite semiconductor nanocrystals remains highly controversial. Here we report compelling evidence of a phonon bottleneck in CsPbI3 nanocrystals with marked size-dependent relaxation of hot carriers by using broadband two-dimensional electronic spectroscopy (2DES). By combining high resolutions in both the time (<10 fs) and excitation energy domains, 2DES allows the clear disentanglement of the thermalization and cooling processes. The lifetime is over doubled for hot carriers when the average edge length of the nanocrystals decreases from 8.2 nm down to 4.6 nm. The confirmation of the phonon bottleneck effect suggests the feasibility of controlling hot carrier dynamics in perovskite semiconductors with nanocrystal size for potential applications of hot carrier devices.

6.
J Phys Chem Lett ; 11(23): 10173-10181, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33197186

RESUMO

Perovskite semiconductor nanocrystals have emerged as an excellent family of materials for optoelectronic applications, where biexciton interaction is essential for optical gain generation and quantum light emission. However, the strength of biexciton interaction remains highly controversial due to the entangled spectral features of the exciton- and biexciton-related transitions in conventional measurement approaches. Here, we tackle the limitation by using polarization-dependent two-dimensional electronic spectroscopy and quantify the excitation energy-dependent biexciton binding energy at cryogenic temperatures. The biexciton binding energy increases with excitation energy, which can be modeled as a near inverse-square size dependence in the effective mass approximation considering the quantum confinement effect. The spectral line width for the exciton-biexciton transition is much broader than that for the ground state to exciton transition, suggesting weakly correlated broadening between these transitions. These inhomogeneity effects should be carefully considered for the future demonstration of optoelectronic applications relying on coherent exciton-biexciton interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...