Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 887890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462900

RESUMO

Depression is one of the main diseases that lead to disability and loss of ability to work. As a traditional Chinese medicine, Zhi-zi-chi decoction is utilized to regulate and improve depression. However, the research on the antidepressant mechanism and efficacy material basis of Zhi-zi-chi decoction has not been reported yet. Our previous research has found that Zhi-Zi-chi decoction can reduce glutamate-induced oxidative stress damage to PC 12 cells, which can exert a neuroprotective effect, and the antidepressant effect of Zhi-Zi-chi decoction was verified in CUMS rat models. In this study, the animal model of depression was established by chronic unpredictable mild stimulation combined with feeding alone. The brain metabolic profile of depressed rats was analyzed by the method of metabolomics based on ultra-performance liquid chromatography-quadrupole/time-of-flight mass. 26 differential metabolites and six metabolic pathways related to the antidepressant of Zhi-zi-chi decoction were screened and analyzed. The targeted metabolism of the glutathione metabolic pathway was analyzed. At the same time, the levels of reactive oxygen species, superoxide dismutase, glutathione reductase, glutathione peroxidase in the brain of depressed rats were measured. Combined with our previous study, the antioxidant effect of the glutathione pathway in the antidepressant effect of Zhi-zi-chi decoction was verified from the cellular and animal levels respectively. These results indicated that Zhi-zi-chi decoction exerted a potential antidepressive effect associated with reversing the imbalance of glutathione and oxidative stress in the brain of depressed rats.

2.
Anal Chem ; 92(23): 15297-15305, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33185440

RESUMO

Oxidative stress is a state of stress injury, which leads to the pathogenesis of most neurodegenerative diseases. Moreover, this is also one of the main reasons for the loss of dopaminergic neurons and the abnormal content of dopamine (DA). In the past decades, a number of studies have found that acetaminophen (AP) is metabolized and distributed in the brain when it is used as a neuroprotective compound. In this context, we proposed an electrochemical sensor based on 9-(4-(10-phenylanthracen-9-yl)phenyl)-9H-carbazole with the goal of diagnosing these two drugs in the body. Carbazole groups can easily be formed into large π-conjugated systems by electropolymerization. The introduction of anthracene exactly combined the carbazole group to establish an efficient electron donor-acceptor pattern, which enhanced π-π interaction with the electrode surface and charge transporting ability. The diagnostic platform showed good sensing activity toward the oxidation of DA and AP. The detection range for DA and AP is from 0.2 to 300 µM and from 0.2 to 400 µM, respectively. The simultaneous detection range is from 0.5 to 250 µM, which is wider than most reports. After a series of electrochemical assessments were determined, the sensor was finally developed to the analysis of pharmaceutical and human serum, displaying a meaningful potential in clinical evaluation.


Assuntos
Teoria da Densidade Funcional , Eletroquímica/métodos , Acetaminofen/análise , Acetaminofen/sangue , Acetaminofen/química , Dopamina/análise , Dopamina/sangue , Dopamina/química , Eletroquímica/instrumentação , Eletrodos , Humanos , Modelos Moleculares , Conformação Molecular , Oxirredução , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...