Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36780578

RESUMO

Protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) is an established site for green herbicide discovery. In this work, based on structural analysis, we develop an active fragment exchange and link (AFEL) approach to designing a new class of N-1,4-diketophenyltriazinones I-III as potent Nicotiana tabacum PPO (PPO) inhibitors. After systematic structure-activity relationship optimizations, a series of new compounds with Ki values in the single-digit nanomolar range toward NtPPO and promising herbicidal activity were discovered. Among them, Ii (Ki = 0.11 nM) displays 284- and 90-fold improvement in NtPPO inhibitory activity over trifludimoxazin (Ki = 31 nM) and saflufenacil (Ki = 10 nM), respectively. In addition, Ip (Ki = 2.14 nM) not only exhibited good herbicidal activity at 9.375-37.5 g ai/ha but also showed high crop safety to rice at 75 g ai/ha by the postemergence application, indicating that Ip could be developed as a potential herbicide for weed control in rice fields. Additionally, our molecular dynamic simulation clarified the molecular basis for the interactions of these molecules with NtPPO. The metabolism studies in planta showed that IIIc could be converted to Ic, which displayed higher herbicidal activity than IIIc. The density functional theory analysis showed that due to the effect of two sulfur atoms at the triazinone moiety, IIIc is more reactive than Ic, making it more easily degraded in planta. Our work indicates that the AFEL strategy could be used to design new molecules with improved bioactivity.

2.
Biochim Biophys Acta Proteins Proteom ; 1871(1): 140855, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182071

RESUMO

Bacteria depend on the ferrous iron transport (Feo) system for the uptake of ferrous iron (Fe2+). The Feo system is crucial for colonization and virulence of pathogens. In γ-proteobacteria, the system consists of FeoA, FeoB, and FeoC. The function of FeoA remains unknown. FeoB likely forms the channel, whose regulation has been suggested to involve its GTPase domain (part of its NFeoB domain). FeoC from Klebsiella pneumonia was found to contain a [4Fe4S] cofactor, whose presence was speculated to enhance the GTPase activity of FeoB (Hsueh, K.-L., et al., J. Bacteriol. 2013 195(20): 4726-34). We present results here that support and extend that hypothesis. We monitored the GTPase activity of FeoB by NMR spectroscopy and found that the presence of 7% FeoC-[4Fe-4S]3+ (the highest level of cofactor achieved in vitro) increased the GTPase rate of NFeoB by 3.6-fold over NFeoB. The effect depends on the oxidation state of the cluster; with reduction of the cluster to [4Fe-4S]2+ the GTPase greatly decreased the GTPase rate. From the effects of point mutations in FeoC on GTPase rates, we conclude that Lys62 and Lys68 on FeoC each contribute to increased GTPase activity on NFeoB. Mutation of Thr37 of NFeoB to Ser nearly abolished the GTPase activity. The GTPase activity of the isolated K. pneumoniae NFeoB-FeoC complex (NFeoBC) was found to be higher in KCl than in NaCl solution. We solved the X-ray structure of the NFeoBC crystallized from KCl and compared it with a prior X-ray structure crystalized from NaCl. We propose a hypothesis, consistent with these results, to explain the factors that influence the GTPase activity. Bacteria may use the oxygen-sensitive cluster as a sensor to up-regulate the gate closing speed.


Assuntos
Ferro , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Cloreto de Sódio , Enxofre , GTP Fosfo-Hidrolases/genética
3.
J Agric Food Chem ; 68(18): 5059-5067, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32286826

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) has been identified as one of the most significant targets in herbicide discovery for resistant weed control. In a continuing effort to discover potent novel HPPD inhibitors, we adopted a ring-expansion strategy to design a series of novel pyrazole-quinazoline-2,4-dione hybrids based on the previously discovered pyrazole-isoindoline-1,3-dione scaffold. One compound, 3-(2-chlorophenyl)-6-(5-hydroxy-1,3-dimethyl-1H-pyrazole-4-carbonyl)-1,5-dimethylquinazoline-2,4(1H,3H)-dione (9bj), displayed excellent potency against AtHPPD, with an IC50 value of 84 nM, which is approximately 16-fold more potent than pyrasulfotole (IC50 = 1359 nM) and 2.7-fold more potent than mesotrione (IC50 = 226 nM). Furthermore, the co-crystal structure of the AtHPPD-9bj complex (PDB ID 6LGT) was determined at a resolution of 1.75 Å. Similar to the existing HPPD inhibitors, compound 9bj formed a bidentate chelating interaction with the metal ion and a π-π stacking interaction with Phe381 and Phe424. In contrast, o-chlorophenyl at the N3 position of quinazoline-2,4-dione with a double conformation was surrounded by hydrophobic residues (Met335, Leu368, Leu427, Phe424, Phe392, and Phe381). Remarkably, the greenhouse assay indicated that most compounds displayed excellent herbicidal activity (complete inhibition) against at least one of the tested weeds at the application rate of 150 g of active ingredient (ai)/ha. Most promisingly, compounds 9aj and 9bi not only exhibited prominent weed control effects with a broad spectrum but also showed very good crop safety to cotton, peanuts, and corn at the dose of 150 g of ai/ha.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , Inibidores Enzimáticos/química , Proteínas de Plantas/antagonistas & inibidores , Plantas Daninhas/enzimologia , Pirazóis/química , Quinazolinas/química , 4-Hidroxifenilpiruvato Dioxigenase/química , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Inibidores Enzimáticos/farmacologia , Herbicidas/química , Herbicidas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Daninhas/química , Plantas Daninhas/efeitos dos fármacos , Pirazóis/farmacologia , Quinazolinas/farmacologia , Relação Estrutura-Atividade , Controle de Plantas Daninhas
4.
J Bacteriol ; 195(20): 4726-34, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23955005

RESUMO

Iron is essential for pathogen survival, virulence, and colonization. Feo is suggested to function as the ferrous iron (Fe(2+)) transporter. The enterobacterial Feo system is composed of 3 proteins: FeoB is the indispensable component and is a large membrane protein likely to function as a permease; FeoA is a small Src homology 3 (SH3) domain protein that interacts with FeoB; FeoC is a winged-helix protein containing 4 conserved Cys residues in a sequence suitable for harboring a putative iron-sulfur (Fe-S) cluster. The presence of an iron-sulfur cluster on FeoC has never been shown experimentally. We report that under anaerobic conditions, the recombinant Klebsiella pneumoniae FeoC (KpFeoC) exhibited hyperfine-shifted nuclear magnetic resonance (NMR) and a UV-visible (UV-Vis) absorbance spectrum characteristic of a paramagnetic center. The electron paramagnetic resonance (EPR) and extended X-ray absorption fine structure (EXAFS) results were consistent only with the [4Fe-4S] clusters. Substituting the cysteinyl sulfur with oxygen resulted in significantly reduced cluster stability, establishing the roles of these cysteines as the ligands for the Fe-S cluster. When exposed to oxygen, the [4Fe-4S] cluster degraded to [3Fe-4S] and eventually disappeared. We propose that KpFeoC may regulate the function of the Feo transporter through the oxygen- or iron-sensitive coordination of the Fe-S cluster.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Klebsiella pneumoniae/metabolismo , Absorciometria de Fóton , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas Ferro-Enxofre/classificação , Proteínas Ferro-Enxofre/genética , Klebsiella pneumoniae/genética , Espectroscopia de Ressonância Magnética , Oxirredução
5.
Curr Microbiol ; 62(4): 1282-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21210121

RESUMO

A CP1201 RIR1 intein is found in the ribonucleotide reductase alpha subunit (RNR α subunit) protein of lytic bacteriophage P1201 from Corynebacterium glutamicum NCHU 87078. This intein can be over-expressed and spliced in Escherichia coli NovaBlue cells. Mutations of C539, the N-terminal residue of the C-extein in the CP1201 RIR1 protein, led to the changes of pattern and level of protein-splicing activities. A G392S variant was found to be a temperature-sensitive protein with complete splicing activity at 17 and 28°C but not at 37°C or higher. We also found that the cleavage at the CP1201 RIR1 intein C-terminus of the double mutant G392S/C539G was blocked, but other cleavage activities could be efficiently performed at 17°C. G392S/C539G variant possessed the properties of low-temperature-induced cleavage at the intein N-terminus.


Assuntos
Bacteriófagos/enzimologia , Mutação , Splicing de RNA , Ribonucleotídeo Redutases/genética , Proteínas Virais/genética , Motivos de Aminoácidos , Bacteriófagos/química , Bacteriófagos/genética , Corynebacterium glutamicum/virologia , Estabilidade Enzimática , Inteínas , Dados de Sequência Molecular , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...