Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1361603, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800414

RESUMO

Bilateral breast cancer (BBC), an infrequent breast cancer subtype, has primarily been studied in terms of incidence, prognosis, and through comparative analysis of synchronous (SBBC) and metachronous (MBBC) manifestations. The advent and application of organoid technology hold profound implications for tumor research and clinical management. This study represents the pioneering use of organoid models in BBC research. We established organoid lines from two surgical tumor specimens of a BBC patient, with one line undergoing detailed pathological and genomic analysis. The BBC organoid from the right breast demonstrated a marker expression profile of ER (-), PR (-), HER-2 (0), and Ki67 index 10%, indicating that it may derived from the TNBC tissue. Whole Exome Sequencing (WES) displayed consistent set of Top10 cancer driver genes affected by missense mutations, frameshift mutation, or splice site mutations in three tumor tissues and the organoid samples. The organoids' single nucleotide polymorphisms (SNPs) were more closely aligned with the TNBC tissue than other tumor tissues. Evolutionary analysis suggested that different tumor regions might evolve from a common ancestral layer. In this case, the development of BBC organoids indicated that simultaneous lesions with diverse molecular profiles shared a high degree of consistency in key tumor-driving mutations. These findings suggest the feasibility of generating BBC organoids representing various molecular types, accurately replicating significant markers and driver mutations of the originating tumor. Consequently, organoids serve as a valuable in vitro model for exploring treatment strategies and elucidating the underlying mechanisms of BBC.

2.
Sci Total Environ ; 912: 169161, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38092213

RESUMO

Selectively reducing nitroaromatics into aromatic amines will not only remove nitroaromatic pollutants in waste effluents to reduce environmental risks, but also yield important feedstocks for chemical industrial manufactures. In this study, a FeCo-co-embedded N-doped Carbon (FeCo-N-C) catalyst with Fe-Co atomic pair has been identified with favorable activity, superior selectivity, excellent reusability, as well as outstanding performance in the treatment of real water. The combined results from theoretical study and experimental tests indicate that the improved catalytic performance of FeCo-N-C is owing to the narrowed band gap and electron delocalization caused by the Fe-Co atomic pair which can improve electron transport in its catalytic reaction. The results of isotope experiments and H* quenching experiments confirm that H2O is the source of hydrogen in catalytic reduction of PNP. FeCo-N-C is identified as a superior catalyst to replace multitudinous currently used noble-metal catalysts for the selective catalytic reduction of nitroaromatics in wastewater treatment.

3.
Front Bioeng Biotechnol ; 11: 1118975, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959903

RESUMO

Introduction: Developing a culture system that can effectively maintain chondrocyte phenotype and functionalization is a promising strategy for cartilage repair. Methods: An alginate/collagen (ALG/COL) hybrid hydrogel using different guluronate/mannuronate acid ratio (G/M ratio) of alginates (a G/M ratio of 64/36 and a G/M ratio of 34/66) with collagen was developed. The effects of G/M ratios on the properties of hydrogels and their effects on the chondrocytes behaviors were evaluated. Results: The results showed that the mechanical stiffness of the hydrogel was significantly affected by the G/M ratios of alginate. Chondrocytes cultured on Mid-G/M hydrogels exhibited better viability and phenotype preservation. Moreover, RT-qPCR analysis showed that the expression of cartilage-specific genes, including SOX9, COL2, and aggrecan was increased while the expression of RAC and ROCK1 was decreased in chondrocytes cultured on Mid-G/M hydrogels. Conclusion: These findings demonstrated that Mid-G/M hydrogels provided suitable matrix conditions for cultivating chondrocytes and may be useful in cartilage tissue engineering. More importantly, the results indicated the importance of taking alginate G/M ratios into account when designing alginate-based composite materials for cartilage tissue engineering.

4.
Environ Sci Pollut Res Int ; 30(18): 51876-51886, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36820965

RESUMO

The electrocatalytic reduction of CO2 towards CO is one of the most desirable routines to reduce atmospheric CO2 concentration and maintain a global carbon balance. In this work, a novel porous NiCu-embedded ZIF-derived N-doped carbon nanoparticle (NiCu@NCNPs) catalyst has been identified as an active, highly selective, stable, and cost-effective catalyst in CO2 reduction. A CO selectivity as high as 100% has been achieved on NiCu@NCNPs which is the highest reported to date. The particle current density of CO on NiCu@NCNPs is around 15 mA cm-2 under the optimized potential at -0.9 V vs. RHE. The NiCu@NCNPs electrode also exhibits excellent stability during the five sequential CO2 electroreduction experiments. The superior catalytic performance of NiCu@NCNPs in CO2RR can be related to its microstructure with high electrochemical surface area and low electron transfer resistance. Furthermore, a kinetic analysis has shown the formation of intermediate *COOH is the rate-determining step in CO2RR towards CO. According to the results of density functional theory (DFT) calculations, a low Gibbs-free energy change (∆G) for the rate-determining step leads to the enhanced catalytic performance of CO2RR on NiCu@NCNPs.


Assuntos
Dióxido de Carbono , Carbono , Cinética , Catálise , Eletrodos
5.
Int J Biol Macromol ; 225: 605-614, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410534

RESUMO

Alginate-based microcapsule has becoming a promising carrier for probiotic encapsulation due to the improved stress resistant ability. Besides the physical protection of microcapsules, bacterial quorum sensing (QS) is another prominent factor affecting microbial stress resistance in microcapsules. In the present study, Vibrio harveyi cells were entrapped and proliferated into cell aggregates in alginate-based microcapsules. The microenvironment composed of cells and biomacromolecules was regulated by the diameter, alginate concentration and core state of microcapsule. Then the effect of microenvironment on bacterial QS capacity was investigated, including bioluminescence, autoinducers (AIs) production and QS related genes expression. The highest diameter of 1200 µm and highest alginate concentration of 2.0 % w/v under the investigation range presented strongest QS capacity, and the maintenance of hydrogel core could enhance bacterial QS. Moreover, the mechanism analysis revealed that the formed biofilm on the surface of cell aggregates hampered the outward transfer of AIs, and the local AIs inside the cell aggregates induced stronger bacteria QS by close-range interaction. As a whole, these findings are helpful to guide the technological development and optimization of microencapsulated probiotics with stronger stress resistance, and the potential application in food, dairy, wastewater treatment and biosensor.


Assuntos
Alginatos , Percepção de Quorum , Cápsulas/farmacologia , Alginatos/farmacologia , Biofilmes
6.
Cancer Cell Int ; 22(1): 364, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36403050

RESUMO

PURPOSE: Radiotherapy is one of the essential treatment modalities for nasopharyngeal carcinoma (NPC), however, radioresistance still poses challenges. Three-dimensional (3D) tumor culture models mimic the in vivo growth conditions of cells more accurately than 2D models. This study is to compare the tumor biological behaviors of NPC cells in 2D, On-Surface 3D and Embedded 3D systems, and to investigate the correlation between radioresistance and extracellular matrix (ECM) stiffness. METHODS: The morphology and radioresistance of the human NPC cell line CNE-1 were observed in 2D and 3D systems. The CCK-8 assay, wounding healing assays, flow cytometry, soft agar assays, and western blot analysis were used to evaluate differences in biological behaviors such as proliferation, migration, cell cycle distribution, and stem cell activity. Different ECM stiffness systems were established by co-blending collagen and alginate in varying proportions. ECM stiffness was evaluated by compressive elastic moduli measurement and colony formation assay was used to assess radioresistance of NPC cells in systems with different ECM stiffness after irradiation. RESULTS: Compared to 2D models, the morphology of NPC cells in 3D culture microenvironments has more in common with in vivo tumor cells and 3D cultured NPC cells exhibit stronger radioresistance. Integrin ß1 but not the epithelial-to-mesenchymal transition pathway in 3D models boost migration ability. Cell proliferation was enhanced, the proportion of tumor stem cells was increased, and G1/S phase arrest occurred in 3D models. NPC cells cultured in softer ECM systems (with low alginate proportions) exhibit striking resistance to ionizing radiation. CONCLUSION: The tumor biological behaviors of NPC cells in 3D groups were obviously different from that of 2D. Radioresistance of NPC cells increased with the stiffness of ECM decreasing.

7.
J Clin Lab Anal ; 36(2): e24233, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35007357

RESUMO

BACKGROUND: Current autoverification, which is only knowledge-based, has low efficiency. Regular historical data analysis may improve autoverification range determination. We attempted to enhance autoverification by selecting autoverification rules by knowledge and ranges from historical data. This new system was compared with the original knowledge-based system. METHODS: New types of rules, extreme values, and consistency checks were added and the autoverification workflow was rearranged to construct a framework. Criteria for creating rules for extreme value ranges, limit checks, consistency checks, and delta checks were determined by analyzing historical Zhongshan laboratory data. The new system's effectiveness was evaluated using pooled data from 20 centers. Efficiency improvement was assessed by a multicenter process. RESULTS: Effectiveness was evaluated by the true positive rate, true negative rate, and overall consistency rate, as compared to manual verification, which were 77.55%, 78.53%, and 78.3%, respectively for the new system. The original overall consistency rate was 56.2%. The new pass rates, indicating efficiency, were increased by 19%-51% among hospitals. Further customization using individualized data increased this rate. CONCLUSIONS: The improved system showed a comparable effectiveness and markedly increased efficiency. This transferable system could be further improved and popularized by utilizing historical data from each hospital.


Assuntos
Inteligência Artificial , Automação Laboratorial , Testes de Química Clínica , Aplicações da Informática Médica , Estudos de Viabilidade , Humanos , Bases de Conhecimento
8.
Chemosphere ; 291(Pt 3): 132889, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34780747

RESUMO

A metal oxide electrode has been developed for the electrochemical CO2 reduction reaction (eCO2RR). It exhibits superior activity and product selectivity towards eCO2RR by circumventing the previously encountered problem of self-reduction with high-valence metals. Specifically, a hydrocerussite [Pb3(CO3)2(OH)2] thin film has been synthesized in situ on a Pb substrate (denoted as ER-HC) by an electroreduction method using a lead-based metal-organic framework (Pb-MOF) as a precursor. The ER-HC electrode exhibits a high selectivity of 96.8% towards HCOOH production with a partial current density of 1.9 mA cm-2 at -0.88 V vs. the reversible hydrogen electrode (RHE). A higher HCOOH partial current density of 7.3 mA cm-2 has been achieved at -0.98 V vs. RHE. Physicochemical and electrochemical characterization results demonstrate that the defective hydrocerussite surface exhibits appropriate adsorption free energy of formate (HCOO-) and a lower reaction free energy for HCOOH production from CO2, which greatly boosts the eCO2RR activity and HCOOH production selectivity. The structure and eCO2RR performance of the hydrocerussite thin film remain stable in 0.1 M KHCO3 as electrolyte, ensuring its durability. Overall, this work not only provides a metal oxide electrode (metal hydroxide, to be more precise) with excellent eCO2RR performance, but also expands the in situ electrochemical derivatization strategy for the fabrication of metal oxide electrodes.


Assuntos
Dióxido de Carbono , Chumbo , Carbonatos , Técnicas Eletroquímicas , Oxirredução
9.
Materials (Basel) ; 14(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34832408

RESUMO

Polymeric micelle-like nanoparticles have demonstrated effectiveness for the delivery of some poorly soluble or hydrophobic anticancer drugs. In this study, a hydrophobic moiety, deoxycholic acid (DCA) was first bonded on a polysaccharide, chitosan (CS), for the preparation of amphiphilic chitosan (CS-DCA), which was further modified with a cationic glycidyltrimethylammounium chloride (GTMAC) to form a novel soluble chitosan derivative (HT-CS-DCA). The cationic amphiphilic HT-CS-DCA was easily self-assembled to micelle-like nanoparticles about 200 nm with narrow size distribution (PDI 0.08-0.18). The zeta potential of nanoparticles was in the range of 14 to 24 mV, indicating higher positive charges. Then, doxorubicin (DOX), an anticancer drug with poor solubility, was entrapped into HT-CS-DCA nanoparticles. The DOX release test was performed in PBS (pH 7.4) at 37 °C, and the results showed that there was no significant burst release in the first two hours, and the cumulative release increased steadily and slowly in the following hours. HT-CS-DCA nanoparticles loaded with DOX could easily enter into MCF-7 cells, as observed by a confocal microscope. As a result, DOX-loaded HT-CS-DCA nanoparticles demonstrated a significant inhibition activity on MCF-7 growth without obvious cellular toxicity in comparison with blank nanoparticles. Therefore, the anticancer efficacy of these cationic HT-CS-DCA nanoparticles showed great promise for the delivery of DOX in cancer therapy.

10.
Chem Commun (Camb) ; 57(60): 7418-7421, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34231569

RESUMO

This study presents a facile treatment to modify the commercial irregular shaped polycrystalline Pb into well-defined octahedral Pb with unique Pb(111) facets. Efficient, selective, and stable electrochemical reduction of CO2 toward formate has been achieved on the treated Pb electrode. The faradaic efficiency of formate production from the CO2RR is 98.03%, which is the highest reported to date. The results from the combination of theoretical calculations and experimental tests demonstrate that the enhanced catalytic performance on the treated Pb electrode stems from the electrode morphology characterized by a unique Pb(111) surface with lower Gibbs free energies (ΔG) for the formation of intermediate OCHO*.

11.
Environ Sci Technol ; 55(14): 10087-10096, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34196544

RESUMO

Reducing the Pd loading on electrodes is critical in the electrocatalytic hydrodechlorination (EHDC) of chlorinated organic compounds (COCs). The EHDC reaction of COCs on Pd involves three steps: H* formation, H* adsorption, and dechlorination. It has been established that the initial hydrogen evolution reaction (HER) occurs on Pd0 and the dechlorination steps occur on Pd2+. A strategy is proposed to design new electrodes by adding a reducible HER-active interlayer to replace Pd0, fulfilling the responsibility of producing hydrogen, and to facilitate the formation of more Pd2+ for following C-Cl bond cleavage. Keeping the atomic hydrogen adsorption energy on the Pd/interlayer similar to that on pure Pd is also necessary for H* adsorption as well as to maintain a high EHDC activity. For the first time, the NiCo2O4-interlayer-modified Pd/Ni-foam electrode was applied in the EHDC of COCs, which enhanced the EHDC efficiency to 100% within 90 min and reduced 88.6% of Pd consumption. The Pd/NiCo2O4/Ni-foam electrode with enhanced EHDC activity was also observed with almost 100% product selectivity and good stability. A synergistic mechanism is proposed for the enhanced EHDC activity on the Pd/NiCo2O4/Ni-foam. This work offers a simple and useful strategy to design robust electrocatalysts for the EHDC of COCs.


Assuntos
Níquel , Paládio , Eletroquímica , Eletrodos , Elétrons
12.
Stem Cell Res Ther ; 11(1): 480, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176873

RESUMO

BACKGROUND: Nontraumatic osteonecrosis of the femoral head (NONFH) is a highly disabling orthopedic disease in young individuals. Plasminogen activator inhibitor 1 (PAI-1) has been reported to be positively associated with NONFH. We aimed to investigate the dysregulating PAI-1 in bone marrow mesenchymal stem cells (BMMSCs) and vascular cells in rabbit steroid-induced NONFH. METHODS: To verify the hypothesis that BMMSCs could promote thrombus formation in a paracrine manner, we collected exosomes from glucocorticoid-treated BMMSCs (GB-Exo) to determine their regulatory effects on vascular cells. microRNA sequencing was conducted to find potential regulators in GB-Exo. Utilizing gain-of-function and knockdown approaches, we testified the regulatory effect of microRNA in exosomes. RESULTS: The expression of PAI-1 was significantly increased in the local microenvironment of the femoral head in the ONFH model. GB-Exo promoted PAI-1 expression in vascular smooth muscle cells and vascular endothelial cells. We also revealed that miR-451-5p in GB-Exo plays a crucial role for the elevated PAI-1. Moreover, we identified miR-133b-3p and tested its role as a potential inhibitor of PAI-1. CONCLUSIONS: This study provided considerable evidence for BMMSC exosomal miR-mediated upregulation of the fibrinolytic regulator PAI-1 in vascular cells. The disruption of coagulation and low fibrinolysis in the femoral head will eventually lead to a disturbance in the microcirculation of NONFH. We believe that our findings could be of great significance for guiding clinical trials in the future.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Osteonecrose , Animais , Células Endoteliais , Cabeça do Fêmur , MicroRNAs/genética , Osteonecrose/genética , Inibidor 1 de Ativador de Plasminogênio/genética , Coelhos
13.
In Vitro Cell Dev Biol Anim ; 56(8): 680-688, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32935257

RESUMO

Crocin has plentiful pharmacological effects, but its role in osteogenesis differentiation of bone marrow mesenchymal stem cells (BMSCs) is unexplored. This study explored the effect of crocin on osteogenesis differentiation, in order to provide evidence for its clinical application. In cell experiments, human BMSCs (hBMSCs) were induced by osteogenesis differentiation medium or crocin. In animal experiments, steroid-induced osteonecrosis of the femoral head (SANFH) rat models was established using lipopolysaccharide (LPS) plus methylprednisolone (MPS), and then treated with crocin. The osteogenesis differentiation capacity of hBMSCs was analyzed by alkaline phosphatase (ALP) and alizarin red S staining. Histopathological changes in rat femoral head tissues were observed by hematoxylin and eosin (H&E) staining. The expression levels of RUNX2, COL1A1, OCN, and GSK-3ß in hBMSCs and rat femoral head tissues were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot (WB) analysis. ALP and alizarin red S staining demonstrated that LAP activity and calcium nodules were increased in hBMSCs treated with crocin. From H&E staining results, femoral head tissues of SANFH models showed typical osteonecrosis, which could be ameliorated by crocin. WB and qRT-PCR assays detected that the expression levels of RUNX2, COL1A1, and OCN in hBMSCs and femoral head tissues of models were obviously increased after crocin treatment, while GSK-3ß phosphorylation was reduced. In general, the action of crocin was concentration-dependent. Crocin might be beneficial to the recovery of SANFH through accelerating osteogenesis differentiation of BMSCs, which might be a novel therapy for related diseases.


Assuntos
Carotenoides/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Animais , Regeneração Óssea/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Cabeça do Fêmur/patologia , Cabeça do Fêmur/fisiopatologia , Necrose da Cabeça do Fêmur/patologia , Necrose da Cabeça do Fêmur/fisiopatologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Esteroides
14.
J Biomed Mater Res B Appl Biomater ; 108(7): 2925-2936, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32662233

RESUMO

Zn alloys are emerging as promising degradable biomedical materials due to their tailorable mechanical properties and moderate biodegradable rate, compared with conventional biodegradable metallic materials. Ag, as an effective antibacterial and reinforcing element, was incorporated into Zn-0.05Mg alloys. In the present work, the effects of the Ag addition on mechanical, cytotoxic, hemolytic, pyrogenic, histological behaviors of the animal were investigated. The compressive yielding strength is enhanced from 198 MPa for Zn-0.05Mg alloy up to 224 and 234 MPa for Zn-0.05Mg-0.5Ag and Zn-0.05Mg-1Ag alloys, respectively. When the compressive strain was 65%, the strength of the Zn-0.05Mg-1.0Ag alloy reached 833 MPa, which was much higher than that of 721 MPa for Zn-0.05Mg alloy. The relative growth rate (RGR) for the extracts of Zn-0.05Mg-1Ag alloy with the concentrations of 10, 50, and 100% after 5 days incubation reaches 98.5, 95.2, and 94.2%, which are higher than those in extracts of Zn-0.05Mg-0.5Ag alloy (98.2, 93.9, 92.1%). The hemolysis rate of the Zn-0.05Mg alloys with 0.5 and 1 wt% Ag is 2.46 and 2.28%, respectively. The variations of body weight and temperature, postinjection symptoms, pathological morphologies of the visceral organs demonstrate that the alloys are nontoxic according to the toxicity rating standards. Zn-0.05wt%Mg-(0.5, 1 wt%) Ag alloys are experimentally safe materials and promising for the future application as biodegradable medical devices.


Assuntos
Ligas , Materiais Biocompatíveis , Magnésio , Teste de Materiais , Prata , Ligas/química , Ligas/farmacologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Magnésio/química , Magnésio/farmacologia , Camundongos , Coelhos , Prata/química , Prata/farmacologia
15.
J Orthop Translat ; 19: 81-93, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31844616

RESUMO

BACKGROUND: As an ideal new graft material, porous tantalum (pTa) has excellent mechanical properties and corrosion resistance and has received increased attention in the biomedical field because of its excellent cytocompatibility and ability to induce bone formation. However, the molecular mechanism of its potential to promote osteogenesis remains unclear, and very few reports have been published on this topic. METHODS: In this study, we first produced porous Ti6Al4V (pTi6Al4V) and pTa with the same pore size by three-dimensional printing combined with chemical vapour deposition. The number of adhesions between pTa and pTi6Al4V and bone marrow mesenchymal stem cells (BMSCs) after 1 day of culture was detected by the live/dead cell staining method. The proliferation activity of the two groups was determined after culture for 1, 3, 5 and 7 days by the cell counting kit-8 method. In addition, the osteogenic activity, mRNA expression levels of osteogenic genes alkaline phosphatase (ALP), osterix (OSX), collagen-I (Col-I), osteonectin (OSN) and osteocalcin (OCN) and protein expression levels of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signalling pathway marker p-ERK of the two groups cultured for 7, 14 and 21 days were determined by the ALP activity assay, real-time quantitative polymerase chain reaction (Q-PCR) and Western blotting, respectively. Subsequently, the two groups were treated with the MAPK/ERK-specific inhibitor U0126, and then, the mRNA expression levels of osteogenic genes and protein expression levels of p-ERK in the cultures were determined by Q-PCR and Western blotting, respectively. RESULTS: The live/dead cell staining and cell counting kit-8 assays showed that the adhesion and proliferation activities of BMSCs on pTa were significantly better than those on pTi6Al4V. In addition, the ALP activity assay and Q-PCR showed that pTa harboured osteogenic activity and that the osteogenic genes ALP, OSX, Col-I, OSN and OCN were highly expressed, and by Western blotting, the expression of p-ERK protein in the pTa group was also significantly higher than that in the pTi6Al4V group. Subsequently, using the MAPK/ERK-specific inhibitor U0126, Western blotting showed that the expression of p-ERK protein was significantly inhibited and that there was no difference between the two groups. Furthermore, Q-PCR showed that osteogenic gene expression and ALP expression levels were significantly increased in the pTa group, and there were no differences in the OSX, Col-I, OSN and OCN mRNA expression levels between the two groups. CONCLUSION: Overall, our research found that compared with the widely used titanium alloy materials, our pTa can promote the adhesion and proliferation of BMSCs, and the molecular mechanism of pTa may occur via activation of the MAPK/ERK signalling pathway to regulate the high expression of OSX, Col I, OSN and OCN osteogenic genes and promote the osteogenic differentiation of BMSCs in vitro. The translational potential of this article : Our self-developed pTa material produced by three-dimensional printing combined with the chemical vapour deposition method not only retains excellent biological activity and osteoinductive ability of the original tantalum metal but also saves considerably on material costs to achieve mass production of personalised orthopaedic implants with pTa as a stent and to accelerate the wide application of pTa implants in clinical practice, which have certain profound significance.

16.
Mikrochim Acta ; 186(12): 853, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31781954

RESUMO

An electrochemical method was designed for the determination and simultaneous reduction of 4-nitrophenol (4-NP). A nitrogen-rich carbon aerogel was synthesized from the precursor of phenol, formaldehyde and melamine. Then, copper nanoparticles were embedded into the aerogel, and the resulting material was used to modify a glassy carbon electrode (GCE), which displayed excellent electrocatalytic activity. Sensitive determination of 4-NP by cyclic voltammetry in 0.5 M sulfuric acid was accomplished. Among the various compositions of Cux@NC, the electrode modified with Cu3@NC showed the strongest reduction peak, typically at a potential of -0.30 V vs. reversible hydrogen electrode (RHE). A further study shows the cyclic voltammetry potential range to extend from -0.46 to +0.44 V (vs. RHE) at a scan rate of 100 mV s-1. Differential pulse voltammetric determination of 4-NP gave a lower detection limit of 53 nM and a current sensitivity of 0.7 µA µM-1 cm-2. The method was applied to the determination of 4-NP in spiked water samples, with comparable results of HPLC. The excellent performance was attributed to the highly graphitized structure of the aerogel with its large surface area and small pore size, and the presence of Cu-N structures as active sites. Graphical abstractSchematic representation of electrochemical determination and reduction of 4-nitrophenol under the glassy carbon electrode modified with highly dispersed Cu nanoparticles embedded on nitrogen-rich carbon aerogel. W: working electrode; R: reference electrode; C: counter electrode). Left: copper nanoparticles embedded in an aerogel.

17.
Int J Biol Macromol ; 140: 1134-1146, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31454646

RESUMO

Controlling the adhesion of mammalian cells at the interface between materials and biological environments is a real challenge when designing materials for tissue engineering applications. The surface properties of implanted materials are known to have a significant impact on cell adhesion. Herein, two types of polyelectrolyte multilayers (PEMs) hydrogel membrane based on marine-derived polysaccharides of chitosan (CHI) and alginate (ALG) biopolymers were fabricated by the layer-by-layer (LbL) technique using simple approach involving the change in assemble sequence of chitosan with different degree of deacetylation (DD). The effect of PEMs formation on the surface properties and their effects on the adhesion of mouse fibroblast cell (L929) of the two membranes were studied. The results showed that the formations of ALG/CHI membranes were related to the rigidity and conformations of chitosan molecules. The adhesion of L929 cell was strongly depended on the surface roughness rather than stiffness. The surface of PEMs can be strongly cytophilic (cell adhesive, terminated with chitosan (C1)) or strongly cytophobic (cell resistant, terminated with chitosan (C2)). The results obtained indicate that ALG/CHI PEMs with different surface morphology and roughness could be used in vitro to manipulate cell behaviors to improve upon the design of tissue-engineered membranes.


Assuntos
Alginatos/química , Quitosana/química , Eletrólitos/química , Fibroblastos/citologia , Hidrogéis/química , Animais , Adesão Celular , Linhagem Celular , Forma Celular , Elasticidade , Camundongos , Peso Molecular , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Água/química
18.
Stem Cell Res Ther ; 10(1): 72, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837004

RESUMO

BACKGROUND: The body is unable to repair and regenerate large area bone defects. Moreover, the repair capacity of articular cartilage is very limited. There has long been a lack of effective treatments for osteochondral lesions. The engineered tissue with biphase synthetic for osteochondral repair has become one of the hot research fields over the past few years. In this study, an integrated biomanufacturing platform was constructed with bone marrow mesenchymal stem cells (BMSCs)/porous tantalum (pTa) associated with chondrocytes/collagen membranes (CM) to repair large osteochondral defects in load-bearing areas of goats. METHODS: Twenty-four goats with a large osteochondral defect in the femoral heads of the left hind legs were randomly divided into three groups: eight were treated with chondrocytes/CM-BMSCs/pTa, eight were treated with pure CM-pTa composite, and the other eight goats were untreated. The repair effect was assessed by X-ray, gross observation, and histomorphology for 16 weeks after the operation. In addition, the biocompatibility of chondrocytes/CM-BMSCs/pTa was observed by flow cytometry, CCK8, immunocytochemistry, and Q-PCR. The characteristics of the chondrocytes/CM-BMSCs/pTa were evaluated using both scanning electron microscopy and mechanical testing machine. RESULTS: The integrated repair material consists of pTa, injectable fibrin sealant, and CM promoted adhesion and growth of BMSCs and chondrocytes. pTa played an important role in promoting the differentiation of BMSCs into osteoblasts. Three-dimensional CM maintained the phenotype of chondrocytes successfully and expressed chondrogenic genes highly. The in vivo study showed that after 16 weeks from implantation, osteochondral defects in almost half of the femoral heads had been successfully repaired by BMSC-loaded pTa associated with biomimetic 3D collagen-based scaffold. CONCLUSIONS: The chondrocytes/CM-BMSCs/pTa demonstrated significant therapeutic efficacy in goat models of large osteochondral defect. This provides a novel therapeutic strategy for large osteochondral lesions in load-bearing areas caused by severe injury, necrosis, infection, degeneration, and tumor resection with a high profile of safety, effectiveness, and simplicity.


Assuntos
Cartilagem Articular/crescimento & desenvolvimento , Condrócitos/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Cartilagem Articular/efeitos dos fármacos , Condrócitos/metabolismo , Colágeno/química , Colágeno/farmacologia , Cabras/crescimento & desenvolvimento , Membranas Artificiais , Porosidade , Tantálio/química , Alicerces Teciduais/química
19.
Mol Med Rep ; 19(5): 3505-3518, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30896852

RESUMO

Transforming growth factor ß1 (TGF­ß1) has been suggested to be a candidate cytokine in the field of bone tissue engineering. Cytokines serve important roles in tissue engineering, particularly in the repair of bone damage; however, the underlying molecular mechanisms remain unclear. In the present study, the effects of TGF­ß1 on the osteogenesis and motility of hFOB1.19 human osteoblasts were demonstrated via the phenotype and gene expression of cells. Additionally, the role of the phosphatidylinositol 3­kinase/protein kinase B/mammalian target of rapamycin/S6 kinase 1 (PI3K/AKT/mTOR/S6K1) signalling pathway in the effects of TGF­ß1 on osteoblasts was investigated. It was demonstrated using Cell Counting Kit­8 and flow cytometry assays that the proliferation of human osteoblasts was promoted by 1 ng/ml TGF­ß1. In addition, alkaline phosphatase activity, Alizarin red staining, scratch­wound and Transwell assays were conducted. It was revealed that osteogenesis and the migration of cells were regulated by TGF­ß1 via the upregulation of osteogenic and migration­associated genes. Alterations in the expression of osteogenesis­ and migration­associated genes were evaluated following pre­treatment with a PI3K/AKT inhibitor (LY294002) and an mTOR/S6K1 inhibitor (rapamycin), with or without TGF­ß1. The results indicated that TGF­ß1 affected the osteogenesis and mineralisation of osteoblasts via the PI3K/AKT signalling pathway. Furthermore, TGF­ß1 exhibited effects on mTOR/S6K1 downstream of PI3K/AKT. The present study demonstrated that TGF­ß1 promoted the proliferation, differentiation and migration of human hFOB1.19 osteoblasts, and revealed that TGF­ß1 affected the biological activity of osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway. Our findings may provide novel insight to aid the development of bone tissue engineering methods for the treatment of bone injury.


Assuntos
Osteoblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular , Movimento Celular , Proliferação de Células , Humanos , Modelos Biológicos , Osteogênese , Serina-Treonina Quinases TOR
20.
J Cell Biochem ; 120(5): 6988-6997, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30657608

RESUMO

Spinal cord injury (SCI) is characterized by dramatic neurons loss and axonal regeneration suppression. The underlying mechanism associated with SCI-induced immune suppression is still unclear. Weighted gene coexpression network analysis (WGCNA) is now widely applied for the identification of the coexpressed modules, hub genes, and pathways associated with clinic traits of diseases. We performed this study to identify hub genes associated with SCI development. Gene Expression Omnibus (GEO) data sets GSE45006 and GSE20907 were downloaded and the significant correlativity and connectivity between them were detected using WGCNA. Three significant consensus modules, including 567 eigengenes, were identified from the master GSE45006 data following the preconditions of approximate scale-free topology for WGCNA. Further bioinformatics analysis showed these eigengenes were involved in inflammatory and immune responses in SCI. Three hub genes Rac2, Itgb2, and Tyrobp and one pathway "natural killer cell-mediated cytotoxicity" were identified following short time-series expression miner, protein-protein interaction network, and functional enrichment analysis. Gradually upregulated expression patterns of Rac2, Itgb2, and Tyrobp genes at 0, 3, 7, and 14 days after SCI were confirmed based on GSE45006 and GSE20907 data set. Finally, we found that Rac2, Itgb2, and Tyrobp genes might take crucial roles in SCI development through the "natural killer cell-mediated cytotoxicity" pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...