Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202412756, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107973

RESUMO

Simultaneous enhancement of free excitons (FEs) emission and self-trapped excitons (STEs) emission remains greatly challenging because of the radiative pathway competition. Here, a significant fluorescence improvement, associated with the radiative recombination of both FEs and STEs is firstly achieved in an unconventional ACI-type hybrid perovskite, (ACA)(MA)PbI4 (ACA=acetamidinium) crystals with {PbI6} octahedron units, through hydrostatic pressure processing. Note that (ACA)(MA)PbI4 exhibits a 91.5-fold emission enhancement and considerable piezochromism from green to red in a mild pressure interval of 1 atm to 2.5 GPa. The substantial distortion of both individual halide octahedron and the Pb-I-Pb angles between two halide octahedra under high pressure indeed determines the pressure-tuning localized excitons behavior. Upon higher pressure, photocurrent enhancement is also observed, which is attributed to the promoted electronic connectivity in (ACA)(MA)PbI4. The anisotropic compaction reduces the distance between neighboring organic molecules and {PbI6} octahedra, leading to the enhancement of hydrogen bonding interactions. This work not only offers a deep understanding of the structure-optical relationships of ACI-type perovskites, but also presents insights into breaking the limits of luminescent efficiency by pressure-suppressed nonradiative recombination.

2.
Angew Chem Int Ed Engl ; : e202409099, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924238

RESUMO

Achieving enhanced or blue-shifted emission from piezochromic materials remains a major challenge. Covalent organic frameworks (COFs) are promising candidates for the development of piezochromic materials owing to their dynamic structures and adjustable optical properties, where the emission behaviors are not solely determined by the functional groups, but are also greatly influenced by the specific geometric arrangement. Nevertheless, this area remains relatively understudied. In this study, a successful synthesis of a series of bicarbazole-based COFs with varying topologies, dimensions, and linkages was conducted, followed by an investigation of their structural and emission properties under hydrostatic pressure generated by a diamond anvil cell. Consequently, these COFs exhibited distinct piezochromic behaviors, particularly a remarkable pressure-induced emission enhancement (PIEE) phenomenon with a 16-fold increase in fluorescence intensity from three-dimensional COFs, surpassing the performance of CPMs and most organic small molecules with PIEE behavior. On the contrary, three two-dimensional COFs with flexible structures exhibited rare blue-shifted emission, whereas the variants with rigid and conjugated structures showed common red-shifted and reduced emission. Mechanism research further revealed that these different piezochromic behaviors were primarily determined by interlayer distance and interaction. This study represents the first systematic exploration of the structures and emission properties of COFs through pressure-treated engineering and provides a new perspective on the design of piezochromic materials.

3.
Adv Sci (Weinh) ; 11(10): e2306937, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38143277

RESUMO

Developing hybrid metal halides with self-trapped exciton (STE) emission is a powerful and promising approach to achieve single-component phosphors for wide-color-gamut display and illumination. Nevertheless, it is difficult to generate STEs and broadband emission in the classical and widely used 3D systems, owing to the great structural connectivity of metal-halogen networks. Here, high pressure is implemented to achieve dual emission and dramatical emission enhancement in 3D metal halide of [Pb3 Br4 ][O2 C(CH2 )2 CO2 ]. The pressure-induced new emission is ascribed to the radiation recombination of STEs from the Pb2 Br2 O2 tetrahedra with the promoted distortion through the isostructural phase transition. Furthermore, the wide range of emission chromaticity can be regulated by controlling the distortion order of different polyhedral units upon compression. This work not only constructs the relationship between structure and optical behavior of [Pb3 Br4 ][O2 C(CH2 )2 CO2 ], but also provides new strategies for optimizing broadband emission toward potential applications in solid-state lighting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...