Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
1.
Front Hum Neurosci ; 18: 1392519, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040086

RESUMO

Numerous studies have demonstrated that neuron-specific enolase (NSE) serves as a distinctive indicator of neuronal injury, with its concentration in blood reflecting the extent and magnitude of nervous system damage, and the expression of serum NSE is correlated with cognitive dysfunction. The assessment of NSE holds significant importance in diagnosing cognitive dysfunction, assessing disease severity, predicting prognosis, and guiding treatment. In this review, the research progress of NSE in cognitive dysfunction was reviewed, and the value of serum NSE level in predicting disease severity and prognosis of patients with cognitive dysfunction was discussed.

2.
Anal Chem ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058331

RESUMO

Accurate diagnosis and effective treatment of tumors remain significant clinical challenges. While fluorescence imaging is essential for tumor detection, it has limitations in terms of specificity, penetration depth, and emission wavelength. Here, we report a novel glutathione (GSH)-responsive peptide self-assembly excimer probe (pSE) that optimizes two-photon tumor imaging and self-assisted counteraction of the cisplatin resistance in cancer cells. The GSH-responsive self-assembly of pSE induces a monomer-excimer transition of coumarin, promoting a near-infrared redshift of fluorescence emission under two-photon excitation. This process enhances penetration depth and minimizes interference from biological autofluorescence. Moreover, the intracellular self-assembly of pSE impacts GSH homeostasis, modulates relevant signaling pathways, and significantly reduces GSTP1 expression, resulting in decreased cisplatin efflux in cisplatin-resistant cancer cells. The proposed self-assembled excimer probe not only distinguishes cancer cells from normal cells but also enhances the efficacy of cisplatin chemotherapy, offering significant potential in tumor diagnosis and overcoming cisplatin-resistant tumors.

3.
World J Gastrointest Oncol ; 16(6): 2610-2630, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38994168

RESUMO

BACKGROUND: Gastric signet ring cell carcinoma (GSRC) represents a specific subtype of gastric cancer renowned for its contentious epidemiological features, treatment principles, and prognostic factors. AIM: To investigate the epidemiology of GSRC and establish an improved model for predicting the prognosis of patients with locally advanced GSRC (LAGSRC) after surgery. METHODS: The annual rates of GSRC incidence and mortality, covering the years 1975 to 2019, were extracted from the Surveillance, Epidemiology, and End Results (SEER) database to explore the temporal trends in both disease incidence and mortality rates using Joinpoint software. The clinical data of 3793 postoperative LAGSRC patients were collected from the SEER database for the analysis of survival rates. The Cox regression model was used to explore the independent prognostic factors for overall survival (OS). The risk factors extracted were used to establish a prognostic nomogram. RESULTS: The overall incidence of GSRC increased dramatically between 1975 and 1998, followed by a significant downward trend in incidence after 1998. In recent years, there has been a similarly optimistic trend in GSRC mortality rates. The trend in GSRC showed discrepancies based on age and sex. Receiver operating characteristic curves, calibration curves, and decision curve analysis for 1-year, 3-year, and 5-year OS demonstrated the high discriminative ability and clinical utility of this nomogram. The area under the curve indicated that the performance of the new model outperformed that of the pathological staging system. CONCLUSION: The model we established can aid clinicians in the early prognostication of LAGSRC patients, resulting in improved clinical outcomes by modifying management strategies and patient health care.

4.
Adv Mater ; : e2405104, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014922

RESUMO

Biological nanopores crucially control the import and export of biomolecules across lipid membranes in cells. They have found widespread use in biophysics and biotechnology, where their typically narrow, fixed diameters enable selective transport of ions and small molecules, as well as DNA and peptides for sequencing applications. Yet, due to their small channel sizes, they preclude the passage of large macromolecules, e.g., therapeutics. Here, the unique combined properties of DNA origami nanotechnology, machine-inspired design, and synthetic biology are harnessed, to present a structurally reconfigurable DNA origami MechanoPore (MP) that features a lumen that is tuneable in size through molecular triggers. Controllable switching of MPs between 3 stable states is confirmed by 3D-DNA-PAINT super-resolution imaging and through dye-influx assays, after reconstitution of the large MPs in the membrane of liposomes via an inverted-emulsion cDICE technique. Confocal imaging of transmembrane transport shows size-selective behavior with adjustable thresholds. Importantly, the conformational changes are fully reversible, attesting to the robust mechanical switching that overcomes pressure from the surrounding lipid molecules. These MPs advance nanopore technology, offering functional nanostructures that can be tuned on-demand - thereby impacting fields as diverse as drug delivery, biomolecule sorting, and sensing, as well as bottom-up synthetic biology.

5.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000029

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge in terms of diagnosis and treatment, with limited therapeutic options and a poor prognosis. This study explored the potential therapeutic role of NPS-1034, a kinase inhibitor targeting MET and AXL, in PDAC. The investigation included monotherapy with NPS-1034 and its combination with the commonly prescribed chemotherapy agents, fluorouracil and oxaliplatin. Our study revealed that NPS-1034 induces cell death and reduces the viability and clonogenicity of PDAC cells in a dose-dependent manner. Furthermore, NPS-1034 inhibits the migration of PDAC cells by suppressing MET/PI3K/AKT axis-induced epithelial-to-mesenchymal transition (EMT). The combination of NPS-1034 with fluorouracil or oxaliplatin demonstrated a synergistic effect, significantly reducing cell viability and inducing tumor cell apoptosis compared to monotherapies. Mechanistic insights provided by next-generation sequencing indicated that NPS-1034 modulates immune responses by inducing type I interferon and tumor necrosis factor production in PDAC cells. This suggests a broader role for NPS-1034 beyond MET and AXL inhibition, positioning it as a potential immunity modulator. Overall, these findings highlight the anticancer potential of NPS-1034 in PDAC treatment in vitro, both as a monotherapy and in combination with traditional chemotherapy, offering a promising avenue for further in vivo investigation before clinical exploration.


Assuntos
Apoptose , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Receptor Tirosina Quinase Axl , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Movimento Celular/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
6.
Adv Mater ; : e2404648, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970529

RESUMO

Flexible and highly thermally conductive materials with consistent thermal conductivity (λ) during large deformation are urgently required to address the heat accumulation in flexible electronics. In this study, spring-like thermal conduction pathways of silver nanowire (S-AgNW) fabricated by 3D printing are compounded with polydimethylsiloxane (PDMS) to prepare S-AgNW/PDMS composites with excellent and consistent λ during deformation. The S-AgNW/PDMS composites exhibit a λ of 7.63 W m-1 K-1 at an AgNW amount of 20 vol%, which is ≈42 times that of PDMS (0.18 W m-1 K-1) and higher than that of AgNW/PDMS composites with the same amount and random dispersion of AgNW (R-AgNW/PDMS) (5.37 W m-1 K-1). Variations in the λ of 20 vol% S-AgNW/PDMS composites are less than 2% under a deformation of 200% elongation, 50% compression, or 180° bending, which benefits from the large deformation characteristics of S-AgNW. The heat-transfer coefficient (0.29 W cm-2 K-1) of 20 vol% S-AgNW/PDMS composites is ≈1.3 times that of the 20 vol% R-AgNW/PDMS composites, which reduces the temperature of a full-stressed central processing unit by 6.8 °C compared to that using the 20 vol% R-AgNW/PDMS composites as a thermally conductive material in the central processing unit.

7.
Dig Dis Sci ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068380

RESUMO

OBJECTIVE: Gastric cancer (GC) is believed to be one of the most common digestive tract malignant tumors. However, mounting evidence indicates a link between the glycolysis and tumorigenesis, including gastric cancer. METHODS: Our research identified 5508 differently expressed mRNAs in gastric cancer. Then, the genes highly associated with tumorigenesis were identified through weighted correlation network analysis (WGCNA). Bioinformatics analysis observed that these hub genes were significantly linked to the regulation of cell cycle, drug metabolism, and glycolysis. Among these hub genes, there is a critical gene involved in glycolysis regulation, namely fructose-bisphosphate B (ALDOB). RESULTS: Analysis based on The Cancer Genome Atlas (TCGA) and three Gene Expression Omnibus (GEO) datasets revealed that ALDOB was significantly downregulated in GC compared with normal tissues. In addition, cell viability assay confirmed that ALDOB acted as a tumor suppressor. Finally, drug sensitivity analysis revealed that ALDOB increased the sensitivity of gastric cancer cells to most antitumor drugs, especially talazoparib, XAV939, and FTI-277. Our results showed that the expression of ALDOB was significantly lower in GC tissues than in normal tissues. And ALDOB significantly inhibited proliferation and migration, delayed glycolysis in GC cells. Consequently, our study suggests that ALDOB may be a potential target for the clinical treatment of gastric cancer.

8.
Front Pharmacol ; 15: 1419044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895635

RESUMO

Glioblastoma multiforme (GBM) is one of the most prevalent and lethal primary central nervous system malignancies. GBM is notorious for its high rates of recurrence and therapy resistance and the PI3K/Akt pathway plays a pivotal role in its malignant behavior. Crebanine (CB), an alkaloid capable of penetrating the blood-brain barrier (BBB), has been shown to have inhibitory effects on proinflammatory molecules and multiple cancer cell lines via pathways such as PI3K/Akt. This study aims to investigate the efficacy and mechanisms of CB treatment on GBM. It is the first study to elucidate the anti-tumor role of CB in GBM, providing new possibilities for GBM therapy. Through a series of experiments, we demonstrate the significant anti-survival, anti-clonogenicity, and proapoptotic effects of CB treatment on GBM cell lines. Next-generation sequencing (NGS) is also conducted and provides a complete list of significant changes in gene expression after treatment, including genes related to apoptosis, the cell cycle, FoxO, and autophagy. The subsequent protein expressions of the upregulation of apoptosis and downregulation of PI3K/Akt are further proved. The clinical applicability of CB to GBM treatment could be high for its BBB-penetrating feature, significant induction of apoptosis, and blockage of the PI3K/Akt pathway. Future research is needed using in vivo experiments and other therapeutic pathways shown in NGS for further clinical or in vivo studies.

9.
Plants (Basel) ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38891304

RESUMO

Citrus Huanglongbing (HLB), caused by the phloem-inhibiting bacterium Candidatus Liberibacter asiaticus (CLas), is the most devastating citrus disease, intimidating citrus production worldwide. Although commercially cultivated citrus cultivars are vulnerable to CLas infection, HLB-tolerant attributes have, however, been observed in certain citrus varieties, suggesting a possible pathway for identifying innate defense regulators that mitigate HLB. By adopting transcriptome and small RNAome analysis, the current study compares the responses of HLB-tolerant lemon (Citrus limon L.) with HLB-susceptible Shatangju mandarin (Citrus reticulata Blanco cv. Shatangju) against CLas infection. Transcriptome analysis revealed significant differences in gene expression between lemon and Shatangju. A total of 1751 and 3076 significantly differentially expressed genes were identified in Shatangju and lemon, respectively. Specifically, CLas infected lemon tissues demonstrated higher expressions of genes involved in antioxidant enzyme activity, protein phosphorylation, carbohydrate, cell wall, and lipid metabolism than Shatangju. Wet-lab experiments further validated these findings, demonstrating increased antioxidant enzyme activity in lemon: APX (35%), SOD (30%), and CAT (64%) than Shatangju. Conversely, Shatangju plants exhibited higher levels of oxidative stress markers like H2O2 (44.5%) and MDA content (65.2%), alongside pronounced ion leakage (11.85%), than lemon. Moreover, microscopic investigations revealed that CLas infected Shatangju phloem exhibits significantly more starch and callose accumulation than lemon. Furthermore, comparative sRNA profiles revealed the potential defensive regulators for HLB tolerance. In Shatangju, increased expression of csi-miR166 suppresses the expression of disease-resistant proteins, leading to inadequate defense against CLas. Conversely, reduced expression of csi-miR166 in lemon plants enables them to combat HLB by activating disease-resistance proteins. The above findings indicate that when infected with CLas, lemon exhibits stronger antioxidative activity and higher expression of disease-resistant genes, contributing to its enhanced tolerance to HLB. In contrast, Shatangju shows lower antioxidative activity, reduced expression of disease-resistant genes, significant ion leakage, and extensive callose deposition, possibly related to damage to plant cell structure and blockage of phloem sieve tubes, thereby promoting the development of HLB symptoms.

10.
Front Pharmacol ; 15: 1393693, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855753

RESUMO

Colorectal cancer is a common malignant tumor with high mortality, for which chemotherapy resistance is one of the main reasons. The high expression of ABCG2 in the cancer cells and expulsion of anticancer drugs directly cause multidrug resistance (MDR). Therefore, the development of new ABCG2 inhibitors that block the active causes of MDR may provide a strategy for the treatment of colorectal cancer. In this study, we find that dorsomorphin (also known as compound C or BML-275) potently inhibits the transporter activity of ABCG2, thereby preserving the chemotherapeutic agents mitoxantrone and doxorubicin to antagonize MDR in ABCG2-overexpressing colorectal cancer cells. Additionally, dorsomorphin does not alter ABCG2 protein expression. The results of molecular docking studies show that dorsomorphin is bound stably to the ABCG2-binding pocket, suggesting that dorsomorphin is a potent ABCG2 inhibitor that attenuates ABCG2-mediated MDR in colorectal cancer.

11.
Appl Opt ; 63(12): 3130-3137, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38856457

RESUMO

Numerous applications at the photon-starved regime require a free-space coupling single-photon detector with a large active area, low dark count rate (DCR), and superior time resolutions. Here, we developed a superconducting microstrip single-photon detector (SMSPD), with a large active area of 260 µm in diameter, a DCR of ∼5k c p s, and a low time jitter of ∼171p s, operated at a near-infrared of 1550 nm and a temperature of ∼2.0K. As a demonstration, we applied the detector to a single-pixel galvanometer scanning system and successfully reconstructed the object information in depth and intensity using a time-correlated photon counting technology.

12.
Cancer Med ; 13(11): e7349, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38872402

RESUMO

BACKGROUND: Patients with Eastern Cooperative Oncology Group performance status (ECOG PS) 2 probably cannot tolerate chemotherapy or other antitumor therapies. Some studies have reported that immunotherapy combined with antiangiogenic therapy is well-tolerated and shows good antitumor activity. However, the efficacy of this combination as a later-line therapy in patients with ECOG PS 2 is unclear. This study evaluated the effectiveness and safety of this combination strategy as third- or further-line therapy in stage IV non-small cell lung cancer (NSCLC) patients with ECOG PS 2. METHODS: In this retrospective study, patients treated with camrelizumab plus antiangiogenic therapy (bevacizumab, anlotinib, or recombinant human endostatin) were included. Objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), quality of life (QOL) assessed by ECOG PS, and safety were analyzed. RESULTS: Between January 10, 2019, and February 28, 2024, a total of 59 patients were included. The ORR was 35.6% (21/59) and the DCR was 86.4%. With a median follow-up of 10.5 months (range: 0.7-23.7), the median PFS was 5.5 months (95% confidence interval [CI]: 3.8-7.3) and the median OS was 10.5 months (95% CI: 11.2-13.6). QOL was improved (≥1 reduction in ECOG PS) in 39 patients (66.1%). The most common Grade 3-4 treatment-related adverse events were hepatic dysfunction (6 [10%]), hypertension (5 [8%]), and hypothyroidism (3 [5%]). There were no treatment-related deaths. CONCLUSIONS: Third- or further-line immunotherapy combined with antiangiogenic therapy is well-tolerated and shows good antitumor activity in stage IV NSCLC patients with ECOG PS 2. Future large-scale prospective studies are required to confirm the clinical benefits of this combination therapy.


Assuntos
Inibidores da Angiogênese , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Pulmonar de Células não Pequenas , Endostatinas , Imunoterapia , Neoplasias Pulmonares , Estadiamento de Neoplasias , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Bevacizumab/uso terapêutico , Bevacizumab/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/terapia , Endostatinas/uso terapêutico , Endostatinas/administração & dosagem , Imunoterapia/métodos , Indóis/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/terapia , Qualidade de Vida , Quinolinas/uso terapêutico , Estudos Retrospectivos
13.
Nano Lett ; 24(28): 8510-8517, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38856705

RESUMO

Optical emitters in hexagonal boron nitride (hBN) are promising probes for single-molecule sensing platforms. When engineered in nanoparticle form, they can be integrated as detectors in nanodevices, yet positional control at the nanoscale is lacking. Here we demonstrate the functionalization of DNA origami nanopores with optically active hBN nanoparticles (NPs) with nanometer precision. The NPs are active under three wavelengths of visible illumination and display both stable and blinking emission, enabling their accurate localization by using wide-field optical nanoscopy. Correlative opto-structural characterization reveals deterministic binding of bright, multicolor hBN NPs at the pore rim due to π-π stacking interactions at site-specific locations on the DNA origami. Our work provides a scalable, bottom-up approach toward deterministic assembly of solid-state emitters on arbitrary structural elements based on DNA origami. Such a nanoscale arrangement of optically active components can advance the development of single-molecule platforms, including optical nanopores and nanochannel sensors.


Assuntos
Compostos de Boro , DNA , Nanoporos , Compostos de Boro/química , DNA/química , Nanotecnologia/métodos , Nanopartículas/química
14.
Hortic Res ; 11(6): uhae118, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919560

RESUMO

Transposable elements (TEs) exert significant influence on plant genomic structure and gene expression. Here, we explored TE-related aspects across 14 Rosaceae genomes, investigating genomic distribution, transposition activity, expression patterns, and nearby differentially expressed genes (DEGs). Analyses unveiled distinct long terminal repeat retrotransposon (LTR-RT) evolutionary patterns, reflecting varied genome size changes among nine species over the past million years. In the past 2.5 million years, Rubus idaeus showed a transposition rate twice as fast as Fragaria vesca, while Pyrus bretschneideri displayed significantly faster transposition compared with Crataegus pinnatifida. Genes adjacent to recent TE insertions were linked to adversity resistance, while those near previous insertions were functionally enriched in morphogenesis, enzyme activity, and metabolic processes. Expression analysis revealed diverse responses of LTR-RTs to internal or external conditions. Furthermore, we identified 3695 pairs of syntenic DEGs proximal to TEs in Malus domestica cv. 'Gala' and M. domestica (GDDH13), suggesting TE insertions may contribute to varietal trait differences in these apple varieties. Our study across representative Rosaceae species underscores the pivotal role of TEs in plant genome evolution within this diverse family. It elucidates how these elements regulate syntenic DEGs on a genome-wide scale, offering insights into Rosaceae-specific genomic evolution.

16.
J Hazard Mater ; 472: 134345, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38696956

RESUMO

Biochar is widely accepted as a green and effective amendment for remediating heavy metals (HMs) contaminated soil, but its long-term efficiency and safety changes with biochar aging in fields. Currently, some reviews have qualitatively summarized biochar aging methods and mechanisms, aging-induced changes in biochar properties, and often ignored the potential eco-environmental risk during biochar aging process. Therefore, this review systematically summarizes the study methods of biochar aging, quantitatively compares the effects of different biochar aging process on its properties, and discusses the potential eco-environmental risk due to biochar aging in HMs contaminated soil. At present, various artificial aging methods (physical aging, chemical aging and biological aging) rather than natural field aging have been applied to study the changes of biochar's properties. Generally, biochar aging increases specific surface area (SSA), pore volume (PV), surface oxygen-containing functional group (OFGs) and O content, while decreases pH, ash, H, C and N content. Chemical aging method has a greater effect on the properties of biochar than other aging methods. In addition, biochar aging may lead to HMs remobilization and produce new types of pollutants, such as polycyclic aromatic hydrocarbons (PAHs), environmentally persistent free radicals (EPFRs) and colloidal/nano biochar particles, which consequently bring secondary eco-environmental risk. Finally, future research directions are suggested to establish a more accurate assessment method and model on biochar aging behavior and evaluate the environmental safety of aged biochar, in order to promote its wider application for remediating HMs contaminated soil.


Assuntos
Carvão Vegetal , Metais Pesados , Poluentes do Solo , Carvão Vegetal/química , Poluentes do Solo/análise , Poluentes do Solo/química , Metais Pesados/análise , Recuperação e Remediação Ambiental , Solo/química , Medição de Risco
17.
J Hazard Mater ; 472: 134498, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733782

RESUMO

Advanced oxidation processes for the treatment of organic pollutants in wastewater suffer from difficulties in mineralization, potential risks of dissolved residues, and high oxidant consumption. In this study, radical-initiated polymerization is dominated in an UV/peroxydisulfate (PDS) process to eliminate organic pollutant of pharmaceutical metoprolol (MTP). Compared with an ideal degradation-based UV/PDS process, the present process can save four fifths of PDS consumption at the same dissolved organic carbon removal of 47.3%. Simultaneously, organic carbon can be recovered from aqueous solution by separating solid polymers at a ratio of 50% of the initial chemical oxygen demand. The chemical structure of products was analyzed to infer the transformation pathways of MTP. Unlike previous studies on simple organic pollutants that the polymerization can occur independently, the polymerization of MTP is dependent on the partial degradation of MTP, and the main monomer in polymerization is a dominant degradation product (4-(2-methoxyethyl)-phenol, denoted as DP151). The separated solid polymers are formed by repeated oxidation and coupling of DP151 or its derivatives through a series of intermediate oligomers. This proof-of-concept study demonstrates the advantage of polymerization-dominated mechanism on dealing with large organic molecules with complex structures, as well as the potential of UV/PDS process for simultaneous organic pollution reduction and organic carbon recovery from aqueous solution.

18.
Chem Biodivers ; : e202400846, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801026

RESUMO

Epimedium genus is a traditional Chinese medicine, which has functions of tonifying kidney and yang, strengthening tendons and bones, dispelling wind and emoving dampness. It is mainly used for the treatment of impotence and spermatorrhea, osteoporosis, Parkinson's, Alzheimer's, and cardiovascular diseases. The aim of this review is to provide a systematic summary of the phytochemistry, pharmacology, and clinical applications of the Epimedium Linn. In this paper, the relevant literature on Epimedium Linn. was collected from 1987 to the present day, and more than 274 chemical constituents, including flavonoids, phenylpropanoids, lignans, phenanthrenes, and others, were isolated from this genus. Modern pharmacological studies have shown that Epimedium Linn. has osteoprotective, neuroprotective, cardiovascular protective, and immune enhancing pharmacological effects. In addition, Epimedium Linn. has been commonly used to treat osteoporosis, erectile dysfunction, hypertension and cardiovascular disease. In this paper, the distribution of resources, chemical compositions, pharmacological effects, clinical applications and quality control of Epimedium Linn. are progressed to provide a reference for further research and development of the resources of this genus.

19.
Int J Clin Pharm ; 46(4): 926-936, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38733475

RESUMO

BACKGROUND: Venlafaxine dose regimens vary considerably between individuals, requiring personalized dosing. AIM: This study aimed to identify dose-related influencing factors of venlafaxine through real-world data analysis and to construct a personalized dose model using advanced artificial intelligence techniques. METHOD: We conducted a retrospective study on patients with depression treated with venlafaxine. Significant variables were selected through a univariate analysis. Subsequently, the predictive performance of seven models (XGBoost, LightGBM, CatBoost, GBDT, ANN, TabNet, and DT) was compared. The algorithm that demonstrated optimal performance was chosen to establish the dose prediction model. Model validation used confusion matrices and ROC analysis. Additionally, a dose subgroup analysis was conducted. RESULTS: A total of 298 patients were included. TabNet was selected to establish the venlafaxine dose prediction model, which exhibited the highest performance with an accuracy of 0.80. The analysis identified seven crucial variables correlated with venlafaxine daily dose, including blood venlafaxine concentration, total protein, lymphocytes, age, globulin, cholinesterase, and blood platelet count. The area under the curve (AUC) for predicting venlafaxine doses of 75 mg, 150 mg, and 225 mg were 0.90, 0.85, and 0.90, respectively. CONCLUSION: We successfully developed a TabNet model to predict venlafaxine doses using real-world data. This model demonstrated substantial predictive accuracy, offering a personalized dosing regimen for venlafaxine. These findings provide valuable guidance for the clinical use of the drug.


Assuntos
Inteligência Artificial , Relação Dose-Resposta a Droga , Medicina de Precisão , Cloridrato de Venlafaxina , Humanos , Cloridrato de Venlafaxina/administração & dosagem , Estudos Retrospectivos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Medicina de Precisão/métodos , Idoso , Antidepressivos de Segunda Geração/administração & dosagem , Depressão/tratamento farmacológico
20.
Cell Rep ; 43(5): 114221, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38748877

RESUMO

ZBP1 is an interferon (IFN)-induced nucleic acid (NA) sensor that senses unusual Z-form NA (Z-NA) to promote cell death and inflammation. However, the mechanisms that dampen ZBP1 activation to fine-tune inflammatory responses are unclear. Here, we characterize a short isoform of ZBP1 (referred to as ZBP1-S) as an intrinsic suppressor of the inflammatory signaling mediated by full-length ZBP1. Mechanistically, ZBP1-S depresses ZBP1-mediated cell death by competitive binding with Z-NA for Zα domains of ZBP1. Cells from mice (Ripk1D325A/D325A) with cleavage-resistant RIPK1-induced autoinflammatory (CRIA) syndrome are alive but sensitive to IFN-induced and ZBP1-dependent cell death. Intriguingly, Ripk1D325A/D325A cells die spontaneously when ZBP1-S is deleted, indicating that cell death driven by ZBP1 is under the control of ZBP1-S. Thus, our findings reveal that alternative splicing of Zbp1 represents autogenic inhibition for regulating ZBP1 signaling and indicate that uncoupling of Z-NA with ZBP1 could be an effective strategy against autoinflammations.


Assuntos
Morte Celular , Isoformas de Proteínas , Proteínas de Ligação a RNA , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Camundongos , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Humanos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Camundongos Endogâmicos C57BL , Processamento Alternativo/genética , Células HEK293 , Inflamação/metabolismo , Inflamação/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...