Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(38): 8111-8122, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39283291

RESUMO

The first high-resolution translational spectroscopy studies of D atom photoproducts following excitation to the Rydberg states of D2S are reported. Excitation at wavelengths λ ∼ 139.1 nm reveals an unusual 'inverse' isotope effect; the 1B1(3da1←2b1) Rydberg state of D2S predissociates much faster than its counterpart in H2S. This is attributed to accidental near resonance with a vibrationally excited level of a lower-lying, more heavily predissociated Rydberg state of D2S that boosts the probability of nonadiabatic coupling to the dissociation continuum with 1A″ symmetry. Excitation at λ ∼ 129.1 nm populates the 1B1(4da1←2b1) Rydberg state, which predissociates more slowly and allows the study of ways in which the branching into different quantum states of the SD products varies with the choice of parent excited (JKaKc) level. All excited parent levels yield both ground (X) and electronically excited (A) state SD fragments. The former are distributed over a wide range of rovibrational (v″, N″) levels, while the population of levels with low v' and high N' is favored in the latter. These trends reflect the topographies of the dissociative 1A″ (1A') potential energy surfaces that correlate with the respective dissociation limits. Rotational motion about the b-inertial axis in the excited state molecule increases the relative yield of SD(A) products, consistent with dissociation by rotationally (Coriolis-) induced coupling from the photoexcited Rydberg level to the 1A' continuum. Molecules excited to the rotationless (JKaKc = 000) level also yield some SD(A) products, however, confirming the operation of a rival fragmentation pathway wherein photoexcited molecules decay by initial vibronic coupling to the 1A″ continuum, with subsequent nonadiabatic coupling between the 1A″ and 1A' continua enabling access to the D + SD(A) limit.

2.
J Phys Chem Lett ; 15(32): 8142-8150, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39092613

RESUMO

Quasi-two-dimensional (quasi-2D) perovskites hold significant potential for diverse design strategies due to their tunable structures, exceptional optical properties, and environmental stability. Due to the complexity of the structure and carrier dynamics, characterization methods such as photoluminescence and absorption spectroscopy can observe but cannot precisely distinguish or identify the phase distribution within quasi-2D perovskite films or correlate phases with carrier dynamics. In this study, we used pressure to modulate the intralayer and interlayer structures of (PEA)2Csn-1PbnBr3n+1 quasi-2D perovskite films, investigating charge carrier dynamics. Steady-state spectroscopy revealed phase transitions at 1.62, 3, and 8 GPa, with free excitons transforming into self-trapped excitons after 8 GPa. Transient absorption spectroscopy elucidated the structural evolution, energy transfer, and pressure-induced transition mechanisms. The results demonstrate that combining pressure and spectroscopy enables the precise identification of phase distribution and pressure response ranges and reveals photophysical mechanisms, providing new insights for optimizing optoelectronic materials.

3.
Nano Lett ; 24(29): 9058-9064, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39007901

RESUMO

PdSe2 is a puckered transition metal dichalcogenide that has been reported to undergo a two-dimensional to three-dimensional structural transition under pressure. Here, we investigated the electronic and phononic evolution of PdSe2 under high pressure using pump-probe spectroscopy. We observed the electronic intraband and interband transitions occurring in the d orbitals of Pd, revealing the disappearance of the Jahn-Teller effect under high pressure. Furthermore, we found that the decay rates of interband recombination and intraband relaxation lifetimes change at 3 and 7 GPa, respectively. First-principles calculations suggest that the bandgap closure slows the decay rate of interband recombination after 3 GPa, while the saturation of phonon-phonon scattering is the main reason for the relatively constant intraband relaxation lifetime. Our work provides a novel perspective for understanding the evolution of the electron and modulation of the carrier dynamics by phonons under pressure.

4.
Nat Commun ; 15(1): 4406, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782991

RESUMO

The photoinduced non-thermalized hot electrons at an interface play a pivotal role in determining plasmonic driven chemical events. However, understanding non-thermalized electron dynamics, which precedes electron thermalization (~125 fs), remains a grand challenge. Herein, we simultaneously captured the dynamics of both molecules and non-thermalized electrons in the MXene/molecule complexes by femtosecond time-resolved spectroscopy. The real-time observation allows for distinguishing non-thermalized and thermalized electron responses. Differing from the thermalized electron/heat transfer, our results reveal two non-thermalized electron dynamical pathways: (i) the non-thermalized electrons directly transfer to attached molecules at an interface within 50 fs; (ii) the non-thermalized electrons scatter at the interface within 125 fs, inducing adsorbed molecules heating. These two distinctive pathways are dependent on the irradiating wavelength and the energy difference between MXene and adsorbed molecules. This research sheds light on the fundamental mechanism and opens opportunities in photocatalysis and interfacial heat transfer theory.

5.
J Phys Chem A ; 128(17): 3351-3360, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38651288

RESUMO

H2S is being detected in the atmospheres of ever more interstellar bodies, and photolysis is an important mechanism by which it is processed. Here, we report H Rydberg atom time-of-flight measurements following the excitation of H2S molecules to selected rotational (JKaKc') levels of the 1B1 Rydberg state associated with the strong absorption feature at wavelengths of λ ∼ 129.1 nm. Analysis of the total kinetic energy release spectra derived from these data reveals that all levels predissociate to yield H atoms in conjunction with both SH(A) and SH(X) partners and that the primary SH(A)/SH(X) product branching ratio increases steeply with ⟨Jb2⟩, the square of the rotational angular momentum about the b-inertial axis in the excited state. These products arise via competing homogeneous (vibronic) and heterogeneous (Coriolis-induced) predissociation pathways that involve coupling to dissociative potential energy surfaces (PES(s)) of, respectively, 1A″ and 1A' symmetries. The present data also show H + SH(A) product formation when exciting the JKaKc' = 000 and 111 levels, for which ⟨Jb2⟩ = 0 and Coriolis coupling to the 1A' PES(s) is symmetry forbidden, implying the operation of another, hitherto unrecognized, route to forming H + SH(A) products following excitation of H2S at energies above ∼9 eV. These data can be expected to stimulate future ab initio molecular dynamic studies that test, refine, and define the currently inferred predissociation pathways available to photoexcited H2S molecules.

6.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38661196

RESUMO

Produced by both nature and human activities, sulfur dioxide (SO2) is an important species in the earth's atmosphere. SO2 has also been found in the atmospheres of other planets and satellites in the solar system. The photoabsorption cross sections and photodissociation of SO2 have been studied for several decades. In this paper, we reported the experimental results for photodissociation dynamics of SO2 via the G̃1B1 state. By analyzing the images from the time-sliced velocity map ion imaging method, the vibrational state population distributions and anisotropy parameters were obtained for the O(1D2) + SO(X3Σ-, a1Δ, b1Σ+) and O(1S0) + SO(X3Σ-) channels, and the branching ratios for the channels O(1D2) + SO(X3Σ-), O(1D2) + SO(a1Δ), and O(1D2) + SO(b1Σ+) were determined to be ∼0.3, ∼0.6, and ∼0.1, respectively. The SO products were dominant in electronically and rovibrationally excited states, which may have yet unrecognized roles in the upper planetary atmosphere.

7.
J Phys Chem B ; 128(8): 1884-1891, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38378490

RESUMO

Complex formation of the copper(II) ion (CuII) with histidine (H) and H-containing peptides plays a crucial role in various metallo-enzymatic reactions. To elucidate the nature of coordinate bonding in CuII complexes, Fourier-transform infrared spectroscopy and 2D IR spectroscopy were employed to investigate the coordination geometries of CuII with diglycine, l-histidylglycine (HG), glycyl-l-histidine (GH), and glycylglycyl-l-histidine. The coordination of CuII to different peptide groups, including the peptide N- and C-termini, the amide group, and the imidazole of the H side chain, exhibits distinct spectral features. The derived molecular structure of the CuII-HG complex based on these spectral features significantly differs from that of CuII-GH, suggesting a preference of the N-terminus and the steric hindrance of the H side chain in CuII chelation.


Assuntos
Complexos de Coordenação , Cobre , Cobre/química , Peptídeos/química , Espectrofotometria Infravermelho , Sítios de Ligação , Estrutura Molecular , Espectroscopia de Ressonância de Spin Eletrônica
8.
Science ; 383(6684): 746-750, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359138

RESUMO

Chemical reactions are generally assumed to proceed from reactants to products along the minimum energy path (MEP). However, straying from the MEP-roaming-has been recognized as an unconventional reaction mechanism and found to occur in both the ground and first excited states. Its existence in highly excited states is however not yet established. We report a dissociation channel to produce electronically excited fragments, S(1D)+O2(a1Δg), from SO2 photodissociation in highly excited states. The results revealed two dissociation pathways: One proceeds through the MEP to produce vibrationally colder O2(a1Δg) and the other yields vibrationally hotter O2(a1Δg) by means of a roaming pathway involving an intramolecular O abstraction during reorientation motion. Such roaming dynamics may well be the rule rather than the exception for molecular photodissociation through highly excited states.

9.
J Phys Chem Lett ; 15(6): 1623-1635, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306470

RESUMO

Metal halide perovskites have garnered significant attention in the scientific community for their promising applications in optoelectronic devices. The application of pressure engineering, a viable technique, has played a crucial role in substantially improving the optoelectronic characteristics of perovskites. Despite notable progress in understanding ground-state structural changes under high pressure, a comprehensive exploration of excited-state dynamics influencing luminescence remains incomplete. This Perspective delves into recent advances in time-resolved dynamics studies of photoexcited metal halide perovskites under high pressure. With a focus on the intricate interplay between structural alterations and electronic properties, we investigate electron-phonon interactions, carrier transport mechanisms, and the influential roles of self-trapped excitons (STEs) and coherent phonons in luminescence. However, significant challenges persist, notably the need for more advanced measurement techniques and a deeper understanding of the phenomena induced by high pressure in perovskites.

10.
ACS Nano ; 17(23): 23714-23722, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38009540

RESUMO

In a two-dimensional (2D) metallic nanostructure, when a sample's thickness is shorter than a carrier mean free path, the ultrathin thickness may influence carrier and energy transport, owing to surface scattering. However, to date, for metallic 2D transition-metal carbides (MXenes), experiments and calculations related to surface scattering have not been performed. The contribution of ultrathin structures to carrier surface scattering in MXene is yet to be explored. Herein, to reveal this effect, we design various models, including metal/MXene, dielectric/MXene, and bulk structure, and analyze their carrier dynamics via ultrafast spectroscopy. The results related to carrier dynamics indicate that the influence of the dielectric/MXene interface and the temperature is negligible. In contrast, the carrier dynamic lifetimes are prolonged owing to weakened surface scattering in metal/MXene, which is supported by ab initio calculations. These results suggest that the carrier-phonon scattering is dominated by surface scattering. These findings can help guide effective energy transport and enhance energy conversion and catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...