Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(31): 28436-28447, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576661

RESUMO

Due to rapid socioeconomic development, increased phosphorus concentrations can cause eutrophication of water bodies, with devastating effects on environmental sustainability and aquatic ecosystems. In this study, ZIF-8-PhIm was prepared for phosphorus removal using 2-phenylimidazole via the solvent-assisted ligand exchange (SALE) method. The structure and composition of ZIF-8-PhIm were characterized by various methods, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) analysis. Compared to the ZIF-8 material, it exhibited a multistage pore structure with larger pore capacity and pore size, increased hydrophilicity, exposure of more adsorption sites, and also stronger electrostatic interaction. Under optimized conditions (T = 298 K, C0 = 150 mg/L, dose = 0.2 g/L), the adsorption capacity of ZIF-8-PhIm reached 162.93 mg/g, which was greater than that of the ZIF-8 material (92.07 mg/g). The Langmuir isotherm and pseudo-second-order kinetic models were suitable for describing the phosphate adsorption of ZIF-8-PhIm. The main effects of ZIF-8-PhIm on phosphate adsorption were Zn-O-P bonding and electrostatic interactions. It also had good regeneration properties. The ZIF-8-PhIm/CS spheres were prepared using chitosan (CS) as the cross-linking agent. The results of dynamic adsorption experiments on the spheres showed a saturation capacity of 85.69 mg/g and a half-penetration time of 514.15 min at 318 K according to the fitted results.

2.
J Phys Chem B ; 119(38): 12490-501, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26332013

RESUMO

Hydrocarbon CO2-philes are of great interest for use in expanding CO2 applications as a green solvent. In this work, multiscale molecular modeling and dissolution behavior measurement were both applied to explore CO2-philicity of the poly(vinyl acetate) (PVAc)-based copolymer. Introduction of a favorable comonomer, i.e., vinyl ethyl ether (VEE), could significantly reduce the polymer-polymer interaction on the premise that the polymer-CO2 interaction was not weakened but enhanced. The ab initio calculated interaction of the model molecules with CO2 demonstrated that the ether group in VEE or VBE was the suitable CO2-philic segment. From the molecular dynamics (MD) simulations of polymer/CO2 systems, the interaction energy and Flory-Huggins parameter (χ12) of poly(VAc-alt-VEE)/CO2 supported that poly(VAc-alt-VEE) possessed better CO2-philicity than PVAc. The dissolution behaviors of the synthesized poly(VAc-co-alkyl vinyl ether) copolymers in CO2 showed the best CO2-phile had the VEE content of about 34 mol %. The MD simulations also indicated that the interaction of random poly(VAc-co-VEE) containing about 30 mol % VEE with CO2 was the strongest and the χ12 was the smallest in these polymer/CO2 systems. Not only could the VEE monomer reduce the polymer-polymer interaction, but it could also enhance the polymer-CO2 interaction with an optimized composition. Introducing a suitable comonomer with a certain composition might be a promising strategy to form the synergistic effect of polymer-polymer interaction and polymer-CO2 interaction for screening the hydrocarbon CO2-philes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...