Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(31): 28436-28447, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576661

RESUMO

Due to rapid socioeconomic development, increased phosphorus concentrations can cause eutrophication of water bodies, with devastating effects on environmental sustainability and aquatic ecosystems. In this study, ZIF-8-PhIm was prepared for phosphorus removal using 2-phenylimidazole via the solvent-assisted ligand exchange (SALE) method. The structure and composition of ZIF-8-PhIm were characterized by various methods, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) analysis. Compared to the ZIF-8 material, it exhibited a multistage pore structure with larger pore capacity and pore size, increased hydrophilicity, exposure of more adsorption sites, and also stronger electrostatic interaction. Under optimized conditions (T = 298 K, C0 = 150 mg/L, dose = 0.2 g/L), the adsorption capacity of ZIF-8-PhIm reached 162.93 mg/g, which was greater than that of the ZIF-8 material (92.07 mg/g). The Langmuir isotherm and pseudo-second-order kinetic models were suitable for describing the phosphate adsorption of ZIF-8-PhIm. The main effects of ZIF-8-PhIm on phosphate adsorption were Zn-O-P bonding and electrostatic interactions. It also had good regeneration properties. The ZIF-8-PhIm/CS spheres were prepared using chitosan (CS) as the cross-linking agent. The results of dynamic adsorption experiments on the spheres showed a saturation capacity of 85.69 mg/g and a half-penetration time of 514.15 min at 318 K according to the fitted results.

2.
ACS Omega ; 8(24): 22067-22076, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37360492

RESUMO

For dimethyl ether (DME) carbonylation, pyridine pre-adsorbed hydrogen mordenite (H-MOR) is beneficial to prolonging the catalyst life. The adsorption and diffusion behaviors on periodic models H-AlMOR and H-AlMOR-Py were simulated. The simulation was based on Monte Carlo and molecular dynamics. The following conclusions were drawn from the simulation results. The adsorption stability of CO in 8-MR is increased, and the adsorption density of CO in 8-MR is more concentrated on H-AlMOR-Py. 8-MR is the main active site for DME carbonylation, so the introduction of pyridine would be beneficial for the main reaction. The adsorption distributions of methyl acetate (MA) (in 12-MR) and H2O on H-AlMOR-Py are significantly decreased. It means the product MA and the byproduct H2O are more easily desorbed on H-AlMOR-Py. For the mixed feed of DME carbonylation, the feed ratio (PCO/PDME) must reach 50:1 on H-AlMOR so that the reaction molar ratio can reach the theoretical value (NCO/NDME ≈ 1:1), while the feed ratio on H-AlMOR-Py is only up to 10:1. Thus, the feed ratio can be adjusted, and raw materials can reduce consumption. In conclusion, H-AlMOR-Py can improve the adsorption equilibrium of reactants CO and DME and increase the concentration of CO in 8-MR.

3.
Molecules ; 28(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241935

RESUMO

Petrochemical wastewater contains p-nitrophenol, a highly toxic, bioaccumulative and persistent pollutant that can harm ecosystems and environmental sustainability. In this study, ZIF-8-PhIm was prepared for p-nitrophenol removal from petrochemical wastewater using solvent-assisted ligand exchange (SALE) with 2-phenylimidazole(2-PhIm). The ZIF-8-PhIm's composition and structure were characterised using the XRD, SEM, FT-IR, 1H NMR, XPS and BET methods. The adsorption effect of ZIF-8-PhIm on p-nitrophenol was investigated with the static adsorption method. Compared to the ZIF-8 materials, ZIF-8-PhIm exhibited stronger π-π interactions, produced a multistage pore structure with larger pore capacity and size, and had increased hydrophilicity and exposure of adsorption sites. Under optimised conditions (dose = 0.4 g/L, T = 298 K, C0 = 400 mg/L), ZIF-8-PhIm achieved an adsorption amount of 828.29 mg/g, which had a greater p-nitrophenol adsorption capacity compared to the ZIF-8 material. The Langmuir isotherm and pseudo-second-order kinetic models appropriately described the p-nitrophenol adsorption of ZIF-8-PhIm. Hydrogen bonding and π-π interactions dominated the p-nitrophenol adsorption of ZIF-8-PhIm. It also had relatively good regeneration properties.

4.
J Phys Chem B ; 119(38): 12490-501, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26332013

RESUMO

Hydrocarbon CO2-philes are of great interest for use in expanding CO2 applications as a green solvent. In this work, multiscale molecular modeling and dissolution behavior measurement were both applied to explore CO2-philicity of the poly(vinyl acetate) (PVAc)-based copolymer. Introduction of a favorable comonomer, i.e., vinyl ethyl ether (VEE), could significantly reduce the polymer-polymer interaction on the premise that the polymer-CO2 interaction was not weakened but enhanced. The ab initio calculated interaction of the model molecules with CO2 demonstrated that the ether group in VEE or VBE was the suitable CO2-philic segment. From the molecular dynamics (MD) simulations of polymer/CO2 systems, the interaction energy and Flory-Huggins parameter (χ12) of poly(VAc-alt-VEE)/CO2 supported that poly(VAc-alt-VEE) possessed better CO2-philicity than PVAc. The dissolution behaviors of the synthesized poly(VAc-co-alkyl vinyl ether) copolymers in CO2 showed the best CO2-phile had the VEE content of about 34 mol %. The MD simulations also indicated that the interaction of random poly(VAc-co-VEE) containing about 30 mol % VEE with CO2 was the strongest and the χ12 was the smallest in these polymer/CO2 systems. Not only could the VEE monomer reduce the polymer-polymer interaction, but it could also enhance the polymer-CO2 interaction with an optimized composition. Introducing a suitable comonomer with a certain composition might be a promising strategy to form the synergistic effect of polymer-polymer interaction and polymer-CO2 interaction for screening the hydrocarbon CO2-philes.

5.
J Phys Chem B ; 119(7): 3194-204, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25599262

RESUMO

Multiscale molecular modeling and dissolution behavior measurement were both used to evaluate the factors conclusive on the CO2-philicity of poly(vinyl acetate) (PVAc) homopolymer and poly(vinyl acetate-alt-maleate) copolymers. The ab initio calculated interaction energies of the candidate CO2-philic molecule models with CO2, including vinyl acetate dimer (VAc), dimethyl maleate (DMM), diethyl maleate (DEM), and dibutyl maleate (DBM), showed that VAc was the most CO2-philc segment. However, the cohesive energy density, solubility parameter, Flory-Huggins parameter, and radial distribution functions calculated by using the molecular dynamics simulations for the four polymer and polymer-CO2 systems indicated that poly(VAc-alt-DBM) had the most CO2-philicity. The corresponding polymers were synthesized by using free radical polymerization. The measurement of cloud point pressures of the four polymers in CO2 also demonstrated that poly(VAc-alt-DBM) had the most CO2-philicity. Although copolymerization of maleate, such as DEM or DBM, with PVAc reduced the polymer-CO2 interactions, the weakened polymer-polymer interaction increased the CO2-philicity of the copolymers. The polymer-polymer interaction had a significant influence on the CO2-philicity of the polymer. Reduction of the polymer-polymer interaction might be a promising strategy to prepare the high CO2-philic polymers on the premise that the strong polymer-CO2 interaction could be maintained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...