Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1400819, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863696

RESUMO

Background: Integrin-dependent cell adhesion and migration play important roles in systemic sclerosis (SSc). The roles of integrin activating molecules including talins and kindlins, however, are unclear in SSc. Objectives: We aimed to explore the function of integrin activating molecules in SSc. Methods: Transcriptome analysis of skin datasets of SSc patients was performed to explore the function of integrin-activating molecules including talin1, talin2, kindlin1, kindlin2 and kindlin3 in SSc. Expression of talin1 in skin tissue was assessed by multiplex immunohistochemistry staining. Levels of talin1 in serum were determined by ELISA. The effects of talin1 inhibition were analyzed in human dermal fibroblasts by real-time PCR, western blot and flow cytometry. Results: We identified that talin1 appeared to be the primary integrin activating molecule involved in skin fibrosis of SSc. Talin1 was significantly upregulated and positively correlates with the modified Rodnan skin thickness score (mRSS) and the expression of pro-fibrotic biomarkers in the skin lesions of SSc patients. Further analyses revealed that talin1 is predominantly expressed in the dermal fibroblasts of SSc skin and promotes fibroblast activation and collagen production. Additionally, talin1 primarily exerts its effects through integrin ß1 and ß5 in SSc. Conclusions: Overexpressed talin1 is participated in skin fibrosis of SSc, and talin1 appears to be a potential new therapeutic target for SSc.


Assuntos
Fibroblastos , Fibrose , Escleroderma Sistêmico , Pele , Talina , Humanos , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Talina/metabolismo , Talina/genética , Pele/metabolismo , Pele/patologia , Fibroblastos/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Células Cultivadas
2.
Front Immunol ; 14: 1166052, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077914

RESUMO

Objectives: The exhausted CD8+T (Tex) cells are a unique cell population of activated T cells that emerges in response to persistent viral infection or tumor antigens. Tex cells showed the characteristics of aging cells, including weakened self-renewal ability, effector function inhibition, sustained high expression of inhibitory receptors including PD-1, TIGIT, TIM-3, and LAG-3, and always accompanied by metabolic and epigenetic reprogramming. Tex cells are getting more and more attention in researching immune-related diseases and tumor immunotherapy. However, studies on Tex-related models for tumor prognosis are still lacking. We hope to establish a risk model based on Tex-related genes for HCC prognosis. Methods: Tex-related GEO datasets from different pathologic factors (chronic HBV, chronic HCV, and telomere shortening) were analyzed respectively to acquire differentially expressed genes (DEGs) by the 'limma' package of R. Genes with at least one intersection were incorporated into Tex-related gene set. GO, KEGG, and GSEA enrichment analyses were produced. Hub genes and the PPI network were established and visualized by the STRING website and Cytoscape software. Transcription factors and targeting small molecules were predicted by the TRUST and CLUE websites. The Tex-related HCC prognostic model was built by Cox regression and verified based on different datasets. Tumor immune dysfunction and exclusion (TIDE) and SubMap algorithms tested immunotherapy sensitivity. Finally, qRT-PCR and Flow Cytometry was used to confirm the bioinformatic results. Results: Hub genes such as AKT1, CDC6, TNF and their upstream transcription factor ILF3, Regulatory factor X-associated protein, STAT3, JUN, and RELA/NFKB1 were identified as potential motivators for Tex. Tex-related genes SLC16A11, CACYBP, HSF2, and ATG10 built the HCC prognostic model and helped with Immunotherapy sensitivity prediction. Conclusion: Our study demonstrated that Tex-related genes might provide accurate prediction for HCC patients in clinical decision-making, prognostic assessment, and immunotherapy. In addition, targeting the hub genes or transcription factors may help to reverse T cell function and enhance the effect of tumor immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Prognóstico , Linfócitos T CD8-Positivos , Fatores de Transcrição/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo
3.
Front Bioeng Biotechnol ; 11: 1135997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911196

RESUMO

Objectives An acute injury is often accompanied by tissue regeneration. In this process, epithelial cells show a tendency of cell proliferation under the induction of injury stress, inflammatory factors, and other factors, accompanied by a temporary decline of cellular function. Regulating this regenerative process and avoiding chronic injury is a concern of regenerative medicine. The severe coronavirus disease 2019 (COVID-19) has posed a significant threat to people's health caused by the coronavirus. Acute liver failure (ALF) is a clinical syndrome resulting from rapid liver dysfunction with a fatal outcome. We hope to analyze the two diseases together to find a way for acute failure treatment. Methods COVID-19 dataset (GSE180226) and ALF dataset (GSE38941) were downloaded from the Gene Expression Omnibus (GEO) database, and the "Deseq2" package and "limma" package were used to identify differentially expressed genes (DEGs). Common DEGs were used for hub genes exploration, Protein-Protein Interaction (PPI) network construction, Gene Ontology (GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) was used to verify the role of hub genes in liver regeneration during in vitro expansion of liver cells and a CCl4-induced ALF mice model. Results: The common gene analysis of the COVID-19 and ALF databases revealed 15 hub genes from 418 common DEGs. These hub genes, including CDC20, were related to cell proliferation and mitosis regulation, reflecting the consistent tissue regeneration change after the injury. Furthermore, hub genes were verified in vitro expansion of liver cells and in vivo ALF model. On this basis, the potential therapeutic small molecule of ALF was found by targeting the hub gene CDC20. Conclusion We have identified hub genes for epithelial cell regeneration under acute injury conditions and explored a new small molecule Apcin for liver function maintenance and ALF treatment. These findings may provide new approaches and ideas for treating COVID-19 patients with ALF.

4.
Cell Res ; 32(6): 513-529, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35508506

RESUMO

It is challenging to derive totipotent stem cells in vitro that functionally and molecularly resemble cells from totipotent embryos. Here, we report that a chemical cocktail enables the derivation of totipotent-like stem cells, designated as totipotent potential stem (TPS) cells, from 2-cell mouse embryos and extended pluripotent stem cells, and that these TPS cells can be stably maintained long term in vitro. TPS cells shared features with 2-cell mouse embryos in terms of totipotency markers, transcriptome, chromatin accessibility and DNA methylation patterns. In vivo chimera formation assays show that these cells have embryonic and extraembryonic developmental potentials at the single-cell level. Moreover, TPS cells can be induced into blastocyst-like structures resembling preimplantation mouse blastocysts. Mechanistically, inhibition of HDAC1/2 and DOT1L activity and activation of RARγ signaling are important for inducing and maintaining totipotent features of TPS cells. Our study opens up a new path toward fully capturing totipotent stem cells in vitro.


Assuntos
Células-Tronco Pluripotentes , Células-Tronco Totipotentes , Animais , Blastocisto , Diferenciação Celular , Quimera , Cromatina , Camundongos , Células-Tronco Totipotentes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...