Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8465, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123560

RESUMO

Inflammasome activity is important for the immune response and is instrumental in numerous clinical conditions. Here we identify a mechanism that modulates the central Caspase-1 and NLR (Nod-like receptor) adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD). We show that the function of ASC in assembling the inflammasome is controlled by its modification with SUMO (small ubiquitin-like modifier) and identify that the nuclear ZBTB16 (zinc-finger and BTB domain-containing protein 16) promotes this SUMOylation. The physiological significance of this activity is demonstrated through the reduction of acute inflammatory pathogenesis caused by a constitutive hyperactive inflammasome by ablating ZBTB16 in a mouse model of Muckle-Wells syndrome. Together our findings identify an further mechanism by which ZBTB16-dependent control of ASC SUMOylation assembles the inflammasome to promote this pro-inflammatory response.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ligação Proteica , Sumoilação
3.
Oncoimmunology ; 12(1): 2210959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197441

RESUMO

T-cell-based immune checkpoint blockade therapy (ICB) can be undermined by local immunosuppressive M2-like tumor-associated macrophages (TAMs). However, modulating macrophages has proved difficult as the molecular and functional features of M2-TAMs on tumor growth are still uncertain. Here we reported that immunosuppressive M2 macrophages render cancer cells resistant to CD8+ T-cell-dependent tumor-killing refractory ICB efficacy by secreting exosomes. Proteomics and functional studies revealed that M2 macrophage-derived exosome (M2-exo) transmitted apolipoprotein E (ApoE) to cancer cells conferring ICB resistance by downregulated MHC-I expression curbing tumor intrinsic immunogenicity. Mechanistically, M2 exosomal ApoE diminished the tumor-intrinsic ATPase activity of binding immunoglobulin protein (BiP) to decrease tumor MHC-I expression. Sensitizing ICB efficacy can be achieved by the administration of ApoE ligand, EZ-482, enhancing ATPase activity of BiP to boost tumor-intrinsic immunogenicity. Therefore, ApoE may serve as a predictor and a potential therapeutic target for ICB resistance in M2-TAMs-enriched cancer patients. Collectively, our findings signify that the exosome-mediated transfer of functional ApoE from M2 macrophages to the tumor cells confers ICB resistance. Our findings also provide a preclinical rationale for treating M2-enriched tumors with ApoE ligand, EZ-482, to restore sensitivity to ICB immunotherapy.


Assuntos
Exossomos , Humanos , Ligantes , Linhagem Celular Tumoral , Macrófagos/metabolismo , Imunoterapia , Antígenos de Neoplasias , Apolipoproteínas E/metabolismo , Adenosina Trifosfatases/metabolismo
4.
Nat Commun ; 13(1): 5413, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109526

RESUMO

Anti-cancer immunity and response to immune therapy is influenced by the metabolic states of the tumours. Immune checkpoint blockade therapy (ICB) is known to involve metabolic adaptation, however, the mechanism is not fully known. Here we show, by metabolic profiling of plasma samples from melanoma-bearing mice undergoing anti-PD1 and anti-CTLA4 combination therapy, that higher levels of purine metabolites, including inosine, mark ICB sensitivity. Metabolic profiles of ICB-treated human cancers confirm the association between inosine levels and ICB sensitivity. In mouse models, inosine supplementation sensitizes tumours to ICB, even if they are intrinsically ICB resistant, by enhancing T cell-mediated cytotoxicity and hence generating an immunologically hotter microenvironment. We find that inosine directly inhibits UBA6 in tumour cells, and lower level of UBA6 makes the tumour more immunogenic and this is reflected in favourable outcome following ICB therapy in human melanomas. Transplanted mouse melanoma and breast cancer cells with genetic ablation of Uba6 show higher sensitivity to ICB than wild type tumours. Thus, we provide evidence of an inosine-regulated UBA6-dependent pathway governing tumour-intrinsic immunogenicity and hence sensitivity to immune checkpoint inhibition, which might provide targets to overcome ICB resistance.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Animais , Terapia Combinada , Humanos , Inosina/farmacologia , Melanoma/patologia , Camundongos , Radioimunoterapia , Microambiente Tumoral , Enzimas Ativadoras de Ubiquitina
5.
Front Immunol ; 13: 935552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874784

RESUMO

The profiling of the tumor immune microenvironment (TIME) is critical for guiding immunotherapy strategies. However, how the composition of the immune landscape affects the tumor progression of gastric cancer (GC) is ill-defined. Here, we used mass cytometry to perform simultaneous in-depth immune profiling of the tumor, adjacent tissues, and blood cells from GC patients and revealed a unique GC tumor-immune signature, where CD8+ T cells were present at a lower frequency in tumor tissues compared to adjacent tissues, whereas regulatory T cells and tumor-associated macrophages (TAMs) were significantly increased, indicating strong suppressive TIME in GC. Incorporated with oncogenic genomic traits, we found that the unique immunophenotype was interactively shaped by a specific GC gene signature across tumor progression. Earlier-stage GC lesions with IFN signaling enrichment harbored significantly altered T-cell compartments while advanced GC featured by metabolism signaling activation was accumulated by TAMs. Interestingly, PD-1 expression on CD8+ T cells was relatively higher in earlier-stage GC patients, indicating that these patients may derive more benefits from PD-1 inhibitors. The dynamic properties of diverse immune cell types revealed by our study provide new dimensions to the immune landscape of GC and facilitate the development of novel immunotherapy strategies for GC patients.


Assuntos
Neoplasias Gástricas , Linfócitos T CD8-Positivos , Humanos , Imunofenotipagem , Neoplasias Gástricas/patologia , Linfócitos T Reguladores , Microambiente Tumoral
6.
J Hematol Oncol ; 15(1): 47, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35488243

RESUMO

The gut microbiota have long been recognized to play a key role in human health and disease. Currently, several lines of evidence from preclinical to clinical research have gradually established that the gut microbiota can modulate antitumor immunity and affect the efficacy of cancer immunotherapies, especially immune checkpoint inhibitors (ICIs). Deciphering the underlying mechanisms reveals that the gut microbiota reprogram the immunity of the tumor microenvironment (TME) by engaging innate and/or adaptive immune cells. Notably, one of the primary modes by which the gut microbiota modulate antitumor immunity is by means of metabolites, which are small molecules that could spread from their initial location of the gut and impact local and systemic antitumor immune response to promote ICI efficiency. Mechanistic exploration provides novel insights for developing rational microbiota-based therapeutic strategies by manipulating gut microbiota, such as fecal microbiota transplantation (FMT), probiotics, engineered microbiomes, and specific microbial metabolites, to augment the efficacy of ICI and advance the age utilization of microbiota precision medicine.


Assuntos
Microbioma Gastrointestinal , Microbiota , Transplante de Microbiota Fecal , Humanos , Imunidade , Imunoterapia
7.
Cancer Discov ; 12(7): 1742-1759, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35420681

RESUMO

Despite the popular use of dietary supplements during conventional cancer treatments, their impacts on the efficacies of prevalent immunotherapies, including immune-checkpoint therapy (ICT), are unknown. Surprisingly, our analyses of electronic health records revealed that ICT-treated patients with cancer who took vitamin E (VitE) had significantly improved survival. In mouse models, VitE increased ICT antitumor efficacy, which depended on dendritic cells (DC). VitE entered DCs via the SCARB1 receptor and restored tumor-associated DC functionality by directly binding to and inhibiting protein tyrosine phosphatase SHP1, a DC-intrinsic checkpoint. SHP1 inhibition, genetically or by VitE treatment, enhanced tumor antigen cross-presentation by DCs and DC-derived extracellular vesicles (DC-EV), triggering systemic antigen-specific T-cell antitumor immunity. Combining VitE with DC-recruiting cancer vaccines or immunogenic chemotherapies greatly boosted ICT efficacy in animals. Therefore, combining VitE supplement or SHP1-inhibited DCs/DC-EVs with DC-enrichment therapies could substantially augment T-cell antitumor immunity and enhance the efficacy of cancer immunotherapies. SIGNIFICANCE: The impacts of nutritional supplements on responses to immunotherapies remain unexplored. Our study revealed that dietary vitamin E binds to and inhibits DC checkpoint SHP1 to increase antigen presentation, prime antitumor T-cell immunity, and enhance immunotherapy efficacy. VitE-treated or SHP1-silenced DCs/DC-EVs could be developed as potent immunotherapies. This article is highlighted in the In This Issue feature, p. 1599.


Assuntos
Vacinas Anticâncer , Neoplasias , Animais , Vacinas Anticâncer/uso terapêutico , Células Dendríticas , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Vitamina E/metabolismo
8.
Cancer Cell ; 40(1): 36-52.e9, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34822775

RESUMO

Reinvigoration of antitumor immunity remains an unmet challenge. Our retrospective analyses revealed that cancer patients who took antihistamines during immunotherapy treatment had significantly improved survival. We uncovered that histamine and histamine receptor H1 (HRH1) are frequently increased in the tumor microenvironment and induce T cell dysfunction. Mechanistically, HRH1-activated macrophages polarize toward an M2-like immunosuppressive phenotype with increased expression of the immune checkpoint VISTA, rendering T cells dysfunctional. HRH1 knockout or antihistamine treatment reverted macrophage immunosuppression, revitalized T cell cytotoxic function, and restored immunotherapy response. Allergy, via the histamine-HRH1 axis, facilitated tumor growth and induced immunotherapy resistance in mice and humans. Importantly, cancer patients with low plasma histamine levels had a more than tripled objective response rate to anti-PD-1 treatment compared with patients with high plasma histamine. Altogether, pre-existing allergy or high histamine levels in cancer patients can dampen immunotherapy responses and warrant prospectively exploring antihistamines as adjuvant agents for combinatorial immunotherapy.


Assuntos
Histamina/metabolismo , Imunoterapia , Neoplasias/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Humanos , Tolerância Imunológica/imunologia , Imunoterapia/métodos , Macrófagos/imunologia , Neoplasias/imunologia , Receptores Histamínicos/imunologia , Receptores Histamínicos/metabolismo , Microambiente Tumoral/imunologia
9.
Am J Cancer Res ; 11(5): 2005-2024, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094666

RESUMO

Prevention of estrogen receptor-negative (ER-) breast cancer is an unmet challenge, although tamoxifen and aromatase inhibitors can successfully decrease the incidence of ER-positive (ER+) breast cancer. PI3K pathway activation has been detected in tamoxifen-resistant ER- breast lesions of patients. Here, we further ratified that the PI3K pathway is significantly activated in premalignant ER- breast lesions compared with paired normal tissues of patients, which prompted our assessment of targeting PI3K on inhibition of ER- mammary tumor initiation and progression. Both genetic knockdown of PIK3CA or intervention with low-doses of a PI3K inhibitor (GDC-0941) prevented the dysplasia phenotype of semi-transformed human ER- mammary epithelial cells in 3-dimensional culture in vitro. Importantly, low-dose GDC-0941 treatment significantly delayed mammary tumor initiation in the MMTV-neu mouse model without exhibiting discernable adverse effects. Interestingly, increased CD8+/GZMB+ T-cells were detected in mammary tissue after GDC-0941 treatment, suggesting enhanced immune surveillance. Mechanistically, elevated expression of potent T-cell chemo-attractants, including CCL5 and CXCL10, were detected both in vitro and in vivo after GDC-0941 treatment. Furthermore, inhibition of PI3K significantly increased T-cell recruitment in a CCL5/CXCL10-dependent manner. In human ER- breast cancer, PI3K activation is correlated with significantly reduced CCL5, CXCL10 and CD8A expression, suggesting that the decreased CD8+ T-cell recruitment and escape of immune surveillance may contribute to ER- breast cancer development. In summary, our study indicates that low-dose PI3K inhibitor treatment may intervene early stage ER- breast cancer development by enhancing immune surveillance via CCL5/CXCL10.

10.
Cancer Sci ; 111(11): 4000-4011, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32798273

RESUMO

Heterotypic interactions between tumor cells and macrophages can enable tumor progression and hold potential for the development of therapeutic interventions. However, the communication between tumors and macrophages and its mechanism are poorly understood. Here, we find that tumor-associated macrophages (TAM) from tumor-bearing mice have high amounts of lipid as compared to macrophages from tumor-free mice. TAM also present high lipid content in clinical human gastric cancer patients. Functionally, TAM with high lipid levels are characterized by polarized M2-like profiling, and exhibit decreased phagocytic potency and upregulated programmed death ligand 1 (PD-L1) expression, blocking anti-tumor T cell responses to support their immunosuppressive function. Mechanistically, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identifies the specific PI3K pathway enriched within lipid-laid TAM. Lipid accumulation in TAM is mainly caused by increased uptake of extracellular lipids from tumor cells, which leads to the upregulated expression of gamma isoform of phosphoinositide 3-kinase (PI3K-γ) polarizing TAM to M2-like profiling. Correspondingly, a preclinical gastric cancer model is used to show pharmacological targeting of PI3K-γ in high-lipid TAM with a selective inhibitor, IPI549. IPI549 restores the functional activity of macrophages and substantially enhances the phagocytosis activity and promotes cytotoxic-T-cell-mediated tumor regression. Collectively, this symbiotic tumor-macrophage interplay provides a potential therapeutic target for gastric cancer patients through targeting PI3K-γ in lipid-laden TAM.


Assuntos
Metabolismo dos Lipídeos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Imunofluorescência , Humanos , Imunofenotipagem , Lipidômica , Ativação de Macrófagos/genética , Camundongos , Modelos Biológicos , Fagocitose , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Gástricas/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia
11.
Front Immunol ; 11: 1731, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849616

RESUMO

The immunosuppressive status of the tumor microenvironment (TME) remains poorly defined due to a lack of understanding regarding the function of tumor-associated macrophages (TAMs), which are abundant in the TME. TAMs are crucial drivers of tumor progression, metastasis, and resistance to therapy. Intra- and inter-tumoral spatial heterogeneities are potential keys to understanding the relationships between subpopulations of TAMs and their functions. Antitumor M1-like and pro-tumor M2-like TAMs coexist within tumors, and the opposing effects of these M1/M2 subpopulations on tumors directly impact current strategies to improve antitumor immune responses. Recent studies have found significant differences among monocytes or macrophages from distinct tumors, and other investigations have explored the existence of diverse TAM subsets at the molecular level. In this review, we discuss emerging evidence highlighting the redefinition of TAM subpopulations and functions in the TME and the possibility of separating macrophage subsets with distinct functions into antitumor M1-like and pro-tumor M2-like TAMs during the development of tumors. Such redefinition may relate to the differential cellular origin and monocyte and macrophage plasticity or heterogeneity of TAMs, which all potentially impact macrophage biomarkers and our understanding of how the phenotypes of TAMs are dictated by their ontogeny, activation status, and localization. Therefore, the detailed landscape of TAMs must be deciphered with the integration of new technologies, such as multiplexed immunohistochemistry (mIHC), mass cytometry by time-of-flight (CyTOF), single-cell RNA-seq (scRNA-seq), spatial transcriptomics, and systems biology approaches, for analyses of the TME.


Assuntos
Plasticidade Celular , Macrófagos/imunologia , Neoplasias/imunologia , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Transdução de Sinais , Transcriptoma , Microambiente Tumoral
12.
Aging (Albany NY) ; 12(9): 8372-8396, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32365332

RESUMO

Increased expression of the kinesin family member 23 (KIF23) has been verified in gastric cancer (GC) and its upregulation contributes to cell proliferation. Even though, the role of KIF23 has not been fully elucidated in GC, and the mechanisms of KIF23 as an oncogene remain unknown. To further identify its potential role in GC, we analyzed gene expression data from GC patients in GEO and TCGA datasets. KIF23 was upregulated in GC, and increased expression of KIF23 correlated with poor prognosis. Importantly, KIF23 inhibition not only suppressed GC cell proliferation, tumorigenesis, but also migration and invasion, and arrested the cell cycle in the G2/M phase. Mechanistic investigations confirmed that KIF23 activated the Wnt/ß-catenin signaling pathway by directly interacting with APC membrane recruitment 1 (Amer1). Furthermore, KIF23 exhibited competitive binding with Amer1 to block the association of Amer1 with adenomatous polyposis coli (APC), thus relocating Amer1 from the membrane and cytoplasm to the nucleus and attenuating the ability of Amer1 to negatively regulate Wnt/ß-catenin signaling, resulting in activation of this signaling pathway. Collectively, our findings demonstrated that KIF23 promoted GC cell proliferation by directly interacting with Amer1 and activating the Wnt/ß-catenin signaling pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Associadas aos Microtúbulos/genética , Neoplasias Gástricas/patologia , Proteínas Supressoras de Tumor/genética , Via de Sinalização Wnt , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias Gástricas/genética , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Sci Transl Med ; 12(545)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461334

RESUMO

The functions of immune cells in brain metastases are unclear because the brain has traditionally been considered "immune privileged." However, we found that a subgroup of immunosuppressive neutrophils is recruited into the brain, enabling brain metastasis development. In brain metastatic cells, enhancer of zeste homolog 2 (EZH2) is highly expressed and phosphorylated at tyrosine-696 (pY696)-EZH2 by nuclear-localized Src tyrosine kinase. Phosphorylation of EZH2 at Y696 changes its binding preference from histone H3 to RNA polymerase II, which consequently switches EZH2's function from a methyltransferase to a transcription factor that increases c-JUN expression. c-Jun up-regulates protumorigenic inflammatory cytokines, including granulocyte colony-stimulating factor (G-CSF), which recruits Arg1+- and PD-L1+ immunosuppressive neutrophils into the brain to drive metastasis outgrowth. G-CSF-blocking antibodies or immune checkpoint blockade therapies combined with Src inhibitors impeded brain metastasis in multiple mouse models. These findings indicate that pY696-EZH2 can function as a methyltransferase-independent transcription factor to facilitate the brain infiltration of immunosuppressive neutrophils, which could be clinically targeted for brain metastasis treatment.


Assuntos
Neoplasias Encefálicas , Proteína Potenciadora do Homólogo 2 de Zeste , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas , Camundongos , Neutrófilos/metabolismo , Fatores de Transcrição/metabolismo
14.
Front Immunol ; 10: 1235, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214189

RESUMO

Immune checkpoint blockade (ICB) immunotherapy increases antitumor immunity by blocking cytotoxic-T-lymphocyte-associated protein 4 (CTLA-4) or programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) and displays robust clinical responses in various cancers. However, ICB immunotherapy also triggers severe inflammatory side effects, known as immune-related adverse effects (irAEs). One of the most common toxicities is immune checkpoint blockade-associated colitis (ICB associated colitis). The exact mechanism of ICB associated colitis remains to be explored. Here, we combined ICB (anti-CTLA-4 and anti-PD-1) treatment with a standard colitis model, in which a more severe form of colitis is induced in mice, to recapitulate the clinical observations in patients receiving combined ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1) therapy, during which colitis is the most frequent complication encountered. We found that the composition of the gut microbiota changed in ICB associated colitis. Principal component analysis of the gut microbiome showed an obvious reduction in the abundance of Lactobacillus in severe ICB associated colitis. Lactobacillus depletion completely by vancomycin augmented the immunopathology of ICB. Furthermore, we found that the ICB toxicity could be totally eliminated via the administration of a widely available probiotic Lactobacillus reuteri (L.reuteri). Oral administration of L. reuteri therapeutically inhibited the development and progression of colitis, thus ameliorating the loss of body weight and inflammatory status induced by ICB treatment. Mechanistically, the protective effect of L. reuteri was associated with a decrease in the distribution of group 3 innate lymphocytes (ILC3s) induced by ICB associated colitis. In conclusion, our study highlights the immunomodulatory mechanism of the gut microbiota and suggests that manipulating the gut microbiota by administrating L. reuteri can mitigate the autoimmunity induced by ICB, thus allowing ICB immunotherapy to stimulate the desired immune response without an apparent immunopathology.


Assuntos
Colite/etiologia , Colite/terapia , Imunidade Inata , Imunomodulação , Limosilactobacillus reuteri/fisiologia , Linfócitos/imunologia , Linfócitos/metabolismo , Probióticos/uso terapêutico , Animais , Antibacterianos/farmacologia , Antineoplásicos Imunológicos/efeitos adversos , Linhagem Celular Tumoral , Citocinas/sangue , Modelos Animais de Doenças , Suscetibilidade a Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Imunomodulação/efeitos dos fármacos , Melanoma Experimental , Camundongos , Terapia de Alvo Molecular/efeitos adversos , Neoplasias/complicações , Neoplasias/tratamento farmacológico
15.
Oncoimmunology ; 7(6): e1433520, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29872566

RESUMO

Current studies aiming at identifying single immune markers with prognostic value have limitations in the context of complex antitumor immunity and cancer immune evasion. Here, we show how the integration of several immune markers influences the predictions of prognosis of gastric cancer (GC) patients. We analyzed Tissue Microarray (TMA) by multiplex immunohistochemistry and measured the expression of immune checkpoint molecule PD-L1 together with antitumor CD8 T cells and immune suppressive FOXP3 Treg cells in a cohort of GC patients. Unsupervised hierarchical clustering analysis of these markers was used to define correlations between CD8 T, FOXP3 Treg and PD-L1 cell densities. We found that FOXP3 and PD-L1 densities were elevated while CD8 T cells were decreased in tumor tissues compared to their adjacent normal tissues. However, patient stratification based on each one of these markers individually did not show significant prognostic value on patient survival. Conversely, combination of the ratios of CD8/FOXP3 and CD8/PD-L1 enabled the identification of patient subgroups with different survival outcomes. As such, high densities of PD-L1 in patients with high CD8/FOXP3 and low CD8/PD-L1 ratios correlated with increased survival. Collectively, this work demonstrates the need for the integration of several immune markers to obtain more meaningful survival prognosis and patient stratification. In addition, our work provides insights into the complex tumor immune evasion and immune regulation by the tumor-infiltrating effector and suppressor cells, informing on the best use of immunotherapy options for treating patients.

16.
Cell Death Dis ; 9(4): 434, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29567987

RESUMO

Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment and have been shown to contribute to tumor aggressiveness. However, the detailed mechanisms underlying the pro-metastatic effect of TAMs on gastric cancer are not clearly defined. Here, we show that TAMs are enriched in gastric cancer. TAMs are characterized by M2-polarized phenotype and promote migration of gastric cancer cells in vitro and in vivo. Furthermore, we find that M2-derived exosomes determine the TAMs-mediated pro-migratory activity. Using mass spectrometry, we identify that apolipoprotein E (ApoE) is highly specific and effective protein in M2 macrophages-derived exosomes. Moreover, TAMs are uniquely immune cells population expressed ApoE in gastric cancer microenvironment. However, exosomes derived from M2 macrophages of Apoe -/- mice have no significant effect on the migration of gastric cancer cells in vitro and in vivo. Mechanistically, M2 macrophage-derived exosomes mediate an intercellular transfer of ApoE-activating PI3K-Akt signaling pathway in recipient gastric cancer cells to remodel the cytoskeleton-supporting migration. Collectively, our findings signify that the exosome-mediated transfer of functional ApoE protein from TAMs to the tumor cells promotes the migration of gastric cancer cells.


Assuntos
Apolipoproteínas E/metabolismo , Exossomos/metabolismo , Macrófagos/metabolismo , Neoplasias Gástricas/patologia , Compostos de Anilina/farmacologia , Animais , Apolipoproteínas E/genética , Compostos de Benzilideno/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Citoesqueleto , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Macrófagos/citologia , Camundongos , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/metabolismo
17.
J Transl Med ; 15(1): 206, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025424

RESUMO

BACKGROUND: Understanding immune phenotypes and human gastric disease in situ requires an approach that leverages multiplexed immunohistochemistry (mIHC) with multispectral imaging to facilitate precise image analyses. METHODS: We developed a novel 4-color mIHC assay based on tyramide signal amplification that allowed us to reliably interrogate immunologic checkpoints, including programmed death-ligand 1 (PD-L1), cytotoxic T cells (CD8+T) and regulatory T cells (Foxp3), in formalin-fixed, paraffin-embedded tissues of various human gastric diseases. By observing cell phenotypes within the disease tissue microenvironment, we were able to determine specific co-localized staining combinations and various measures of cell density. RESULTS: We found that PD-L1 was expressed in gastric ulcer and in tumor cells (TCs), as well as in tumor-infiltrating immune cells (TIICs), but not in normal gastric mucosa or other gastric intraepithelial neoplastic tissues. Furthermore, we found no significant reduction in CD8+T cells, whereas the ratio of CD8+T:Foxp3 cells and CD8+T:PD-L1 cells was suppressed in tumor tissues and elevated in adjacent normal tissues. An unsupervised hierarchical analysis also identified correlations between CD8+T and Foxp3+ tumor-infiltrating lymphocyte (TIL) densities and average PD-L1 levels. Three main groups were identified based on the results of CD8+T:PD-L1 ratios in gastric tumor tissues. Furthermore, integrating CD8+T:Foxp3 ratios, which increased the complexity for immune phenotype status, revealed 6-7 clusters that enabled the separation of gastric cancer patients at the same clinical stage into different risk-group subsets. CONCLUSIONS: Characterizing immune phenotypes in human gastric disease tissues via multiplexed immunohistochemistry may help guide PD-L1 clinical therapy. Observing unique disease tissue microenvironments can improve our understanding of immune phenotypes and cell interactions within these microenvironments, providing the ability to predict safe responses to immunotherapies.


Assuntos
Imuno-Histoquímica/métodos , Gastropatias/imunologia , Gastropatias/patologia , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Fenótipo
18.
J Exp Clin Cancer Res ; 36(1): 53, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28407783

RESUMO

BACKGROUND: Cisplatin-based chemotherapy is frequently used to treat advanced gastric cancer (GC). However, the resistance often occurs with the mechanisms being not well understood. Recently, emerging evidence indicates that tumor-associated macrophages (TAMs) play an important role in chemoresistance of cancer. As the important mediators in intercellular communications, exosomes secreted by host cells mediate the exchange of genetic materials and proteins to be involved in tumor aggressiveness. The aim of the study was to investigate whether exosomes derived from TAMs mediate cisplatin resistance in gastric cancer. METHODS: M2 polarized macrophages were obtained from mouse bone marrow or human PBMCs stimulated with IL-4 and IL-13. Exosomes isolated from M2 macrophages culture medium were characterized, and miRNA expression profiles of M2 derived exosomes (M2-exos) were analyzed using miRNA microarray. In vitro cell coculture was further conducted to investigate M2-exos mediated crosstalk between TAMs and tumor cells. Moreover, the in vivo experiments were performed using a subcutaneous transplantation tumor model in athymic nude mice. RESULTS: In this study, we showed that M2 polarized macrophages promoted cisplatin (DDP) resistance in gastric cancer cells and exosomes derived from M2 macrophages (M2-exos) are involved in mediating the resistance to DDP. Using miRNA profiles assay, we identify significantly higher levels of microRNA-21 (miR21) isomiRNAs in exosomes and cell lysate isolated from M2 polarized macrophage. Functional studies revealed that exosomal miR-21 can be directly transferred from macrophages to the gastric cancer cells, where it suppresses cell apoptosis and enhances activation of PI3K/AKT signaling pathway by down-regulation of PTEN. CONCLUSIONS: Our findings suggest that exosomal transfer of tumor-associated macrophages derived miR-21 confer DDP resistance in gastric cancer, and targeting exosome communication may be a promising new therapeutic strategy for gastric cancer patients.


Assuntos
Cisplatino/farmacologia , Exossomos/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Exossomos/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
19.
Oncotarget ; 8(29): 47020-47036, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28402947

RESUMO

The identification of novel biomarkers of cancer is important for improved diagnosis and prognosis. With an abundant amount of resources in the publicly available database, such as the Cancer Genome Atlas (TCGA) database, an integrative strategy is used to systematically characterize the aberrant patterns of colorectal cancer (CRC) based on RNA-Seq, chromatin immunoprecipitation sequencing (ChIP-Seq), tissue microarray (TMA), gene profiling and molecular signatures. The expression of the transcription factor ATF3 was elevated in human CRC specimens in a TMA by immunochemistry analysis compared to the adjacent normal tissues. In addition, ATF3 overexpression associated with a regulatory molecular signature, and its functions are related to the pathogenic development of CRC. Furthermore, putative ATF3 regulatory elements were identified within the promoters of ATF3 target genes and were confirmed by ChIP-Seq. Critically, in higher ATF3 expression cell lines (HCT116 and RKO) with CRISPR/Cas9 mediated ATF3 knock out, we are able to show that ATF3 target genes such as CEACAM1, DUSP14, HDC, HLF and ULBP2, are required for invasion and proliferation, and they are robustly linked with poor prognosis in CRC. Our findings have important implications for CRC tumorigenesis and may be exploited for diagnostic and therapeutic purposes.


Assuntos
Fator 3 Ativador da Transcrição/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Fator 3 Ativador da Transcrição/metabolismo , Idoso , Idoso de 80 Anos ou mais , Sítios de Ligação , Biomarcadores , Movimento Celular/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Ligação Proteica , Transcriptoma , Carga Tumoral
20.
Oncotarget ; 7(45): 73003-73015, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27682874

RESUMO

IL-35 is a novel heterodimeric and inhibitory cytokine, composed of interleukin-12 subunit alpha (P35) and Epstein-Barr virus -induced gene 3 (EBI3). IL-35 has been reported to be produced by a range of cell types, especially regulatory T cells, and to exert immunosuppressive effects via the STATx signaling pathway. In this study, we demonstrated that IL-35 expression was elevated in both serum and tumors in patients with colorectal cancer. IL-35 mainly expressed in CD4+ T cells in human colorectal cancer tumors and adjacent tissues. Increased IL-35 expression in tumor-adjacent tissues was significantly associated with tumor metastasis. IL-35 inhibited the proliferation of CD4+CD25- T effector cells in vitro in a dose-dependent manner, and its suppression was partially reversed by applying IL-35-neutralizing antibodies. IL-35 treatment activated the phosphorylation of both STAT1 and STAT3 in human CD4+ T cells. Meanwhile, IL-35 induced a positive feedback loop to promote its own production. We observed that Tregs obtained from colorectal cancer patients were capable of inducing more IL-35 production. In addition, EBI3 promoter-driven luciferase activity was higher than that of the mock plasmid after IL-35stimulation. Thus, our study indicates that the high level of IL-35 in colorectal cancer promotes the production of IL-35 via STAT1 and STAT3, which suppresses T cell proliferation and may participate in tumor immunotolerance.


Assuntos
Neoplasias Colorretais/metabolismo , Interleucinas/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Linfócitos T Reguladores/metabolismo , Linfócitos T/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Feminino , Citometria de Fluxo , Expressão Gênica , Humanos , Interleucinas/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Antígenos de Histocompatibilidade Menor/genética , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Regiões Promotoras Genéticas , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...