Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(13): 16106-16119, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38427537

RESUMO

Catalysis involving gold supported on metal oxides has undergone extensive examination. However, the nature of the catalytic site under actual reaction conditions and the role of the support continue to be vigorously debated. This study addresses these issues through experimental investigations and theoretical simulations. We explore a novel catalytic mechanism that employs dynamic single-atom catalysis for the hydrochlorination of acetylene. This catalytic mechanism occurs in defective ZrO2-supported Au-Zr single-atom alloys. Specifically, the dynamic single-atom catalysis is a result of the mobility of the gold cation, which is accelerated by Cl radicals and strongly couples with the abundant unsaturated surface sites of ZrO2 in a synergistic manner. As a result, the Au electronic structure dynamically evolves, leading to a decrease in the addition reaction energy barrier. Notably, the Au cation can detach from the Au-Zr alloy structure to catalyze the hydrochlorination of acetylene near the Zr-Ov-Zr sites and then reintegrate back into the Au-Zr alloy structure upon completion of the reaction. This study underscores the significance of dynamic active sites under reaction conditions and their pivotal role in catalysis.

2.
Technol Health Care ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37781823

RESUMO

BACKGROUND: Although cone beam computed tomography (CBCT) plays an important role in the diagnosis and treatment of oral diseases, its image segmentation method needs to be further improved, and there are still objections about the clinical application effect of general anesthesia (GA) on children's dental fear (CDF). OBJECTIVE: This study aimed to investigate the application value of CBCT based on intelligent computer segmentation model in oral diagnosis and treatment of children in the context of biomedical signals, and to analyze the alleviating effect of GA on CDF. METHODS: Based on the regional level set (CV) algorithm, the local binary fitting (LBF) model was introduced to optimize it, and the tooth CBCT image segmentation model CV-LBF was established to compare the segmentation accuracy (SA), maximum symmetric surface distance (MSSD), average symmetric surface distance (ASSD), over segmentation rate (OR), and under segmentation rate (UR) between these model and other algorithms. 82 children with CDF were divided into general anesthesia group (GAG) (n= 38) and controls (n= 44) according to the voluntary principle of their families. Children in GAG were treated with GA and controls with protective fixed intervention. Children's fear survey schedule-dental subscale (CFSS-DS) and Venham scores were counted before intervention in the two groups. CFSS-DS scores were recorded at 2 hours after intervention and after recovery in children in GAG. CFSS-DS and Venham scores were performed in all children 1 week after surgery. RESULTS: The results showed that the S⁢A value of CV-LBF algorithm was higher than that of region growing algorithm (P< 0.05). OR, UR, MSSD, and ASSD values of CV-LBF algorithm were evidently lower than those of other algorithms (P< 0.05). CFSS-DS scores were lower in GAG than in controls 2 hours after intervention and at return visits after 1 week of intervention (P< 0.001), and Venham scores were lower in GAG than in controls after intervention (P< 0.001). After intervention, the proportion of children with Venham grade 0, 1, 2, and 3 was obviously higher in GAG than in controls (P< 0.001), while the proportion of children with Venham grade 4 and 5 was clearly higher in controls than in GAG (P< 0.001). CONCLUSION: The results revealed that the computer intelligent segmentation model CV-LBF has potential application value in CBCT image segmentation of children's teeth, and GA can effectively alleviate anxiety of children with CDF and can be used as biomedical signals.

3.
Phys Chem Chem Phys ; 25(12): 8556-8563, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36883834

RESUMO

4-Chloroaniline (4-CAN) plays an important role in chemical and industrial production. However, it remains a challenge to avoid the hydrogenation of the C-Cl bond in the synthesis process to improve selectivity under high activity conditions. In this study, we in situ fabricated ruthenium nanoparticles (Ru NPs) containing vacancies inserted into porous carbon (Ru@C-2) as a highly efficient catalyst for the catalytic hydrogenation of 4-chloronitrobenzene (4-CNB) with remarkable conversion (99.9%), selectivity (99.9%), and stability. Experiments and theoretical calculations indicate that the appropriate Ru vacancies affect the charge distribution of the Ru@C-2 catalyst, promote the electron transfer between the Ru metal and support, and increase the active sites of the Ru metal, thus facilitating the adsorption of 4-CNB and the desorption of 4-CAN to improve the activity and stability of the catalyst. This study can provide some enlightenment for the development of new 4-CNB hydrogenation catalysts.

4.
ACS Omega ; 8(9): 8341-8345, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36910984

RESUMO

Imidazolium-based ionic liquid mixtures with [NO3]- and [AlCl4]- anions were used as oxidizing agents for the dissolution of Au, Pd, and Pt metals under mild conditions. The thermodynamic reduction of [NO3]- to [NO] is catalyzed by [AlCl4]- anions and coupled with the oxidation process of noble metals. The developed ionic liquid system for dissolving Au can reactivate the Au0 formed in the deactivation process of the catalyst in vinyl chloride production. This demonstrates the relevance of the here-presented work for technical noble metal recycling.

5.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838588

RESUMO

In this study, the typical oxidation process of Au/C catalysts exposed to HCl is presented. Although the process violates the standard electrode potentials, the "oxidized" tendency of Au(0) species is analyzed. This oxidation behavior can only be triggered over the Au/C sample within residual cationic Au species, and terminated over the completely metallic Au(0)/C sample. This study demonstrates that the presence of surface chlorination species cannot facilitate the oxidation of Au(0) and Au(I) when the sample is treated with HCl alone, which excludes the oxidation paths of: Au(0) → Au(III) and Au(I) → Au(III). The reported "HCl-oxidized Au(0)" behavior is partially caused by the migration of Au(III) species in the carbon bulk-phase, which occurs outside the XPS detection limit region and into the detection limit rather than the "HCl-oxidized Au(0)" itself. The mechanism of driving the bulk-phase Au(III) migrated from the steady destabilized state to the carbon surface is then studied. This study demonstrates that the migration of Au cannot be neglected behind the curious oxidation phenomenon by HCl, which provides a new perspective for the oxidation of other noble metals by HCl.


Assuntos
Carbono , Ouro , Oxirredução , Catálise , Eletrodos
6.
Commun Chem ; 5(1): 2, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36697741

RESUMO

Vinyl chloride, the monomer of polyvinyl chloride (PVC), is industrially synthesized via acetylene hydrochlorination. Thereby, easy to sublimate but toxic mercury chloride catalysts are widely used. It is imperative to find environmentally friendly non-mercury catalysts to promote the green production of PVC. Low-cost copper-based catalysts are promising candidates. In this study, phosphorus-doped Cu-based catalysts are prepared. It is shown that the type of phosphorus configuration and the distribution on the surface of the carrier can be adjusted by changing the calcination temperature. Among the different phosphorus species, the formed P-C bond plays a key role. The coordination structure formed by the interaction between P-C bonds and atomically dispersed Cu2+ species results in effective and stable active sites. Insights on how P-C bonds activate the substrate may provide ideas for the design and optimization of phosphorus-doped catalysts for acetylene hydrochlorination.

7.
Phys Chem Chem Phys ; 22(37): 20995-20999, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32955049

RESUMO

Whether the reaction pathway is steady or dynamic over the whole life cycle of a catalyst process can facilitate our understanding of its catalytic behavior. Herein, the dynamic reaction pathways of nitrogen-doped carbon catalysts are investigated in acetylene hydrochlorination. When triggered, the reaction follows the Langmuir-Hinshelwood mechanism with pyrrolic N and pyridinic N as dual active sites. However, pyridinic N is deactivated first, due to the strong adsorption of hydrogen chloride, causing the reaction to further run with pyrrolic N as the single active site and follow the Eley-Rideal mechanism. This work provides a new promising way to study the catalytic behavior of nitrogen-doped carbon catalysts.

8.
Chem Commun (Camb) ; 56(73): 10722-10725, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32789339

RESUMO

Ru-Based catalysts with distinct active phases from Ru0, to RuO2, RuCl3 and RuCl2N were synthesized and evaluated in acetylene hydrochlorination. RuCl2N is identified as the efficient active phase due to its co-activation of acetylene and hydrogen chloride. This discovery holds great potential to accelerate the large-scale application of Ru-based catalysts in industry.

9.
Chem Commun (Camb) ; 56(38): 5174-5177, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32267259

RESUMO

Boron-doped carbon nanodot materials, comprising evenly distributed BC3-nanodots in a layered carbon matrix, are prepared through a pre-assembly assisted carbonization synthetic strategy. The prepared materials are endowed with high electron affinity and distortion resistance, which provides a stable framework while generating affinity to substrates.

10.
Materials (Basel) ; 12(8)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013614

RESUMO

Development of a sustainable process for designing and synthesising an active and stable catalyst for hydrochlorination of acetylene is challenging, yet crucial, for industrial vinyl chloride monomer (VCM) production. Herein, direct synthesis of bimetallic AuCu catalysts using organic aqua regia (OAR) preparation methods was investigated. In comparison with conventional aqua regia (AR), bimetallic AuCu catalysts synthesised from OAR exhibit enhanced activity and stability. After careful characterisation of the catalyst samples using X-ray diffraction patterns (XRD), Scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS), and Temperature-programmed desorption (TPD), this observation was justified for the following reasons: 1) the existence of sulphur and nitrogen atoms stabilised the cationic Au active sites, and 2) OAR helped to sustain the function of the Cu promotor by stabilising it. Advanced understanding on the importance of promoter stability has unveiled new perspectives for this research area.

11.
RSC Adv ; 9(37): 21557-21563, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521342

RESUMO

Acetylene hydrochlorination is an attractive chemical reaction for the manufacture of polyvinyl chloride (PVC), and the development efforts are focused on the search for non-mercury catalyst systems. Supported Pd-based catalysts have relatively high activity in the catalytic hydrochlorination of acetylene but are still deactivated rather quickly. Herein, we demonstrated that the atomically dispersed (NH4)2PdCl4 complex, distributed on activated carbon, enabled the highly active and stable production of the vinyl chloride monomer (VCM) through acetylene hydrochlorination under low temperature conditions. We found that the presence of nitrogen-containing ligands in the structure of the active center could remarkably improve the stability of the Pd-based catalysts when compared with the case of the conventional PdCl2 catalyst. Further analyses via X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) show that the variations in the Pd dispersion, chemical state and reduction property are caused by the nitrogen-containing ligands. Temperature-programmed desorption (TPD) characterizations illustrated that the N-containing ligands over the (NH4)2PdCl4/AC catalyst might enhance the adsorption of HCl. These findings suggest that in addition to strategies that target the doping modification of support materials, optimization of the structure of the active center complexes provides a new path for the design of highly active and stable Pd-based catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...