Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924467

RESUMO

Adaptive metabolic switches are proposed to underlie conversions between cellular states during normal development as well as in cancer evolution. Metabolic adaptations represent important therapeutic targets in tumors, highlighting the need to characterize the full spectrum, characteristics, and regulation of the metabolic switches. To investigate the hypothesis that metabolic switches associated with specific metabolic states can be recognized by locating large alternating gene expression patterns, we developed a method to identify interspersed gene sets by massive correlated biclustering (MCbiclust) and to predict their metabolic wiring. Testing the method on breast cancer transcriptome datasets revealed a series of gene sets with switch-like behavior that could be used to predict mitochondrial content, metabolic activity, and central carbon flux in tumors. The predictions were experimentally validated by bioenergetic profiling and metabolic flux analysis of 13C-labelled substrates. The metabolic switch positions also distinguished between cellular states, correlating with tumor pathology, prognosis, and chemosensitivity. The method is applicable to any large and heterogeneous transcriptome dataset to discover metabolic and associated pathophysiological states.

2.
Nat Metab ; 5(11): 1870-1886, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37946084

RESUMO

Tumors are intrinsically heterogeneous and it is well established that this directs their evolution, hinders their classification and frustrates therapy1-3. Consequently, spatially resolved omics-level analyses are gaining traction4-9. Despite considerable therapeutic interest, tumor metabolism has been lagging behind this development and there is a paucity of data regarding its spatial organization. To address this shortcoming, we set out to study the local metabolic effects of the oncogene c-MYC, a pleiotropic transcription factor that accumulates with tumor progression and influences metabolism10,11. Through correlative mass spectrometry imaging, we show that pantothenic acid (vitamin B5) associates with MYC-high areas within both human and murine mammary tumors, where its conversion to coenzyme A fuels Krebs cycle activity. Mechanistically, we show that this is accomplished by MYC-mediated upregulation of its multivitamin transporter SLC5A6. Notably, we show that SLC5A6 over-expression alone can induce increased cell growth and a shift toward biosynthesis, whereas conversely, dietary restriction of pantothenic acid leads to a reversal of many MYC-mediated metabolic changes and results in hampered tumor growth. Our work thus establishes the availability of vitamins and cofactors as a potential bottleneck in tumor progression, which can be exploited therapeutically. Overall, we show that a spatial understanding of local metabolism facilitates the identification of clinically relevant, tractable metabolic targets.


Assuntos
Neoplasias da Mama , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/metabolismo , Ácido Pantotênico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Vitaminas
3.
Nat Metab ; 5(8): 1303-1318, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37580540

RESUMO

The genomic landscape of colorectal cancer (CRC) is shaped by inactivating mutations in tumour suppressors such as APC, and oncogenic mutations such as mutant KRAS. Here we used genetically engineered mouse models, and multimodal mass spectrometry-based metabolomics to study the impact of common genetic drivers of CRC on the metabolic landscape of the intestine. We show that untargeted metabolic profiling can be applied to stratify intestinal tissues according to underlying genetic alterations, and use mass spectrometry imaging to identify tumour, stromal and normal adjacent tissues. By identifying ions that drive variation between normal and transformed tissues, we found dysregulation of the methionine cycle to be a hallmark of APC-deficient CRC. Loss of Apc in the mouse intestine was found to be sufficient to drive expression of one of its enzymes, adenosylhomocysteinase (AHCY), which was also found to be transcriptionally upregulated in human CRC. Targeting of AHCY function impaired growth of APC-deficient organoids in vitro, and prevented the characteristic hyperproliferative/crypt progenitor phenotype driven by acute deletion of Apc in vivo, even in the context of mutant Kras. Finally, pharmacological inhibition of AHCY reduced intestinal tumour burden in ApcMin/+ mice indicating its potential as a metabolic drug target in CRC.


Assuntos
Neoplasias Colorretais , Animais , Humanos , Camundongos , Adenosil-Homocisteinase/genética , Adenosil-Homocisteinase/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Metabolômica , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
4.
Cell Rep ; 42(6): 112562, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37245210

RESUMO

Mitochondrial 10-formyltetrahydrofolate (10-formyl-THF) is utilized by three mitochondrial enzymes to produce formate for nucleotide synthesis, NADPH for antioxidant defense, and formyl-methionine (fMet) to initiate mitochondrial mRNA translation. One of these enzymes-aldehyde dehydrogenase 1 family member 2 (ALDH1L2)-produces NADPH by catabolizing 10-formyl-THF into CO2 and THF. Using breast cancer cell lines, we show that reduction of ALDH1L2 expression increases ROS levels and the production of both formate and fMet. Both depletion of ALDH1L2 and direct exposure to formate result in enhanced cancer cell migration that is dependent on the expression of the formyl-peptide receptor (FPR). In various tumor models, increased ALDH1L2 expression lowers formate and fMet accumulation and limits metastatic capacity, while human breast cancer samples show a consistent reduction of ALDH1L2 expression in metastases. Together, our data suggest that loss of ALDH1L2 can support metastatic progression by promoting formate and fMet production, resulting in enhanced FPR-dependent signaling.


Assuntos
Neoplasias da Mama , Formiatos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Feminino , Humanos , Neoplasias da Mama/metabolismo , Formiatos/metabolismo , Metionina , NADP , Espécies Reativas de Oxigênio , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo
5.
Cancer Cell ; 40(10): 1092-1094, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36220071

RESUMO

Seki et al. report in Nature that increasing glucose catabolism in brown adipose tissue by cold exposure lowers blood glucose and insulin tolerance. This systemic effect on body metabolism decreases glucose catabolism in tumors and arrests tumor progression, offering a novel alternative approach for metabolism-based cancer therapy.


Assuntos
Glicemia , Insulinas , Tecido Adiposo Marrom/metabolismo , Glicemia/metabolismo , Metabolismo Energético , Glucose/metabolismo , Humanos , Insulinas/metabolismo
6.
Mol Imaging ; 2022: 5185951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967756

RESUMO

Purpose: Quantitative in vivo [18F]-(2S,4R)4-fluoroglutamine ([18F]4-FGln or more simply [18F]FGln) metabolic kinetic parameters are compared with activity levels of glutamine metabolism in different types of hepatocellular carcinoma (HCC). Methods: For this study, we used two transgenic mouse models of HCC induced by protooncogenes, MYC, and MET. Biochemical data have shown that tumors induced by MYC have increased levels of glutamine metabolism compared to those induced by MET. One-hour dynamic [18F]FGln PET data were acquired and reconstructed for fasted MYC mice (n = 11 tumors from 7 animals), fasted MET mice (n = 8 tumors from 6 animals), fasted FVBN controls (n = 8 normal liver regions from 6 animals), nonfasted MYC mice (n = 16 tumors from 6 animals), and nonfasted FVBN controls (n = 8 normal liver regions from 3 animals). The influx rate constants (K 1) using the one-tissue compartment model were derived for each tumor with the left ventricular blood pool input function. Results: Influx rate constants were significantly higher for MYC tumors (K 1 = 0.374 ± 0.133) than for MET tumors (K 1 = 0.141 ± 0.058) under fasting conditions (P = 0.0002). Rate constants were also significantly lower for MET tumors (K 1 = 0.141 ± 0.135) than normal livers (K 1 = 0.332 ± 0.179) under fasting conditions (P = 0.0123). Fasting conditions tested for MYC tumors and normal livers did not result in any significant difference with P values > 0.005. Conclusion: Higher influx rate constants corresponded to elevated levels of glutamine metabolism as determined by biochemical assays. The data showed that there is a distinctive difference in glutamine metabolism between MYC and MET tumors. Our study has demonstrated the potential of [18F]FGln PET imaging as a tool to assess glutamine metabolism in HCC tumors in vivo with a caution that it may not be able to clearly distinguish HCC tumors from normal liver tissue.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Modelos Animais de Doenças , Glutamina/análogos & derivados , Glutamina/metabolismo , Neoplasias Hepáticas/diagnóstico por imagem , Camundongos , Camundongos Transgênicos , Tomografia por Emissão de Pósitrons/métodos
7.
Cell ; 184(26): 6226-6228, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34942098

RESUMO

Altered metabolism of tumors offers an opportunity to use metabolic interventions as a therapeutic strategy. Lien et al. demonstrate that understanding how specific diets with different carbohydrate and fat composition affect tumor metabolism is essential in order to use this opportunity efficiently.


Assuntos
Carboidratos da Dieta , Neoplasias , Dieta , Humanos , Refeições , Neoplasias/tratamento farmacológico
8.
Nat Commun ; 12(1): 6409, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737295

RESUMO

Mutations of the mitochondrial genome (mtDNA) cause a range of profoundly debilitating clinical conditions for which treatment options are very limited. Most mtDNA diseases show heteroplasmy - tissues express both wild-type and mutant mtDNA. While the level of heteroplasmy broadly correlates with disease severity, the relationships between specific mtDNA mutations, heteroplasmy, disease phenotype and severity are poorly understood. We have carried out extensive bioenergetic, metabolomic and RNAseq studies on heteroplasmic patient-derived cells carrying the most prevalent disease related mtDNA mutation, the m.3243 A > G. These studies reveal that the mutation promotes changes in metabolites which are associated with the upregulation of the PI3K-Akt-mTORC1 axis in patient-derived cells and tissues. Remarkably, pharmacological inhibition of PI3K, Akt, or mTORC1 reduced mtDNA mutant load and partially rescued cellular bioenergetic function. The PI3K-Akt-mTORC1 axis thus represents a potential therapeutic target that may benefit people suffering from the consequences of the m.3243 A > G mutation.


Assuntos
DNA Mitocondrial/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , DNA Mitocondrial/genética , Feminino , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Mutação/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética
9.
Cancers (Basel) ; 13(3)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498690

RESUMO

With most cancer-related deaths resulting from metastasis, the development of new therapeutic approaches against metastatic colorectal cancer (mCRC) is essential to increasing patient survival. The metabolic adaptations that support mCRC remain undefined and their elucidation is crucial to identify potential therapeutic targets. Here, we employed a strategy for the rational identification of targetable metabolic vulnerabilities. This strategy involved first a thorough metabolic characterisation of same-patient-derived cell lines from primary colon adenocarcinoma (SW480), its lymph node metastasis (SW620) and a liver metastatic derivative (SW620-LiM2), and second, using a novel multi-omics integration workflow, identification of metabolic vulnerabilities specific to the metastatic cell lines. We discovered that the metastatic cell lines are selectively vulnerable to the inhibition of cystine import and folate metabolism, two key pathways in redox homeostasis. Specifically, we identified the system xCT and MTHFD1 genes as potential therapeutic targets, both individually and combined, for combating mCRC.

10.
Nat Metab ; 2(4): 335-350, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32694609

RESUMO

Plasticity of cancer metabolism can be a major obstacle to efficient targeting of tumour-specific metabolic vulnerabilities. Here, we identify the compensatory mechanisms following the inhibition of major pathways of central carbon metabolism in c-MYC-induced liver tumours. We find that, while inhibition of both glutaminase isoforms (Gls1 and Gls2) in tumours considerably delays tumourigenesis, glutamine catabolism continues, owing to the action of amidotransferases. Synergistic inhibition of both glutaminases and compensatory amidotransferases is required to block glutamine catabolism and proliferation of mouse and human tumour cells in vitro and in vivo. Gls1 deletion is also compensated for by glycolysis. Thus, co-inhibition of Gls1 and hexokinase 2 significantly affects Krebs cycle activity and tumour formation. Finally, the inhibition of biosynthesis of either serine (Psat1-KO) or fatty acid (Fasn-KO) is compensated for by uptake of circulating nutrients, and dietary restriction of both serine and glycine or fatty acids synergistically suppresses tumourigenesis. These results highlight the high flexibility of tumour metabolism and demonstrate that either pharmacological or dietary targeting of metabolic compensatory mechanisms can improve therapeutic outcomes.


Assuntos
Neoplasias Hepáticas/metabolismo , Animais , Proliferação de Células , Glucose/metabolismo , Glutaminase/antagonistas & inibidores , Glutaminase/genética , Glutamina/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo
11.
Br J Cancer ; 122(2): 136-149, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819196

RESUMO

Cancer is a complex disease of multiple alterations occuring at the epigenomic, genomic, transcriptomic, proteomic and/or metabolic levels. The contribution of genetic mutations in cancer initiation, progression and evolution is well understood. However, although metabolic changes in cancer have long been acknowledged and considered a plausible therapeutic target, the crosstalk between genetic and metabolic alterations throughout cancer types is not clearly defined. In this review, we summarise the present understanding of the interactions between genetic drivers of cellular transformation and cancer-associated metabolic changes, and how these interactions contribute to metabolic heterogeneity of tumours. We discuss the essential question of whether changes in metabolism are a cause or a consequence in the formation of cancer. We highlight two modes of how metabolism contributes to tumour formation. One is when metabolic reprogramming occurs downstream of oncogenic mutations in signalling pathways and supports tumorigenesis. The other is where metabolic reprogramming initiates transformation being either downstream of mutations in oncometabolite genes or induced by chronic wounding, inflammation, oxygen stress or metabolic diseases. Finally, we focus on the factors that can contribute to metabolic heterogeneity in tumours, including genetic heterogeneity, immunomodulatory factors and tissue architecture. We believe that an in-depth understanding of cancer metabolic reprogramming, and the role of metabolic dysregulation in tumour initiation and progression, can help identify cellular vulnerabilities that can be exploited for therapeutic use.


Assuntos
Carcinogênese/genética , Genoma Humano/genética , Neoplasias/metabolismo , Humanos , Neoplasias/genética , Transdução de Sinais/genética , Transcriptoma/genética
12.
Mol Metab ; 33: 83-101, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31668988

RESUMO

BACKGROUND: It has been known for close to a century that, on average, tumors have a metabolism that is different from those found in healthy tissues. Typically, tumors show a biosynthetic metabolism that distinguishes itself by engaging in large scale aerobic glycolysis, heightened flux through the pentose phosphate pathway, and increased glutaminolysis among other means. However, it is becoming equally clear that non tumorous tissues at times can engage in similar metabolism, while tumors show a high degree of metabolic flexibility reacting to cues, and stresses in their local environment. SCOPE OF THE REVIEW: In this review, we want to scrutinize historic and recent research on metabolism, comparing and contrasting oncogenic and physiological metabolic states. This will allow us to better define states of bona fide tumor metabolism. We will further contextualize the stress response and the metabolic evolutionary trajectory seen in tumors, and how these contribute to tumor progression. Lastly, we will analyze the implications of these characteristics with respect to therapy response. MAJOR CONCLUSIONS: In our review, we argue that there is not one single oncogenic state, but rather a diverse set of oncogenic states. These are grounded on a physiological proliferative/wound healing program but distinguish themselves due to their large scale of proliferation, mutations, and transcriptional changes in key metabolic pathways, and the adaptations to widespread stress signals within tumors. We find evidence for the necessity of metabolic flexibility and stress responses in tumor progression and how these responses in turn shape oncogenic progression. Lastly, we find evidence for the notion that the metabolic adaptability of tumors frequently frustrates therapeutic interventions.


Assuntos
Glucose/metabolismo , Invasividade Neoplásica/genética , Neoplasias/metabolismo , Evasão Tumoral/genética , Proliferação de Células/genética , Ciclo do Ácido Cítrico/genética , Metabolismo Energético/genética , Glicólise/genética , Humanos , Redes e Vias Metabólicas/genética , Mutação/genética , Invasividade Neoplásica/patologia , Neoplasias/genética , Neoplasias/patologia , Via de Pentose Fosfato/genética
13.
BJR Case Rep ; 5(3): 20190026, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31555479

RESUMO

Hyperpolarised 13C MRI (HP-MRI) is a novel imaging technique that allows real-time analysis of metabolic pathways in vivo.1 The technology to conduct HP-MRI in humans has recently become available and is starting to be clinically applied. As knowledge of molecular biology advances, it is increasingly apparent that cancer cell metabolism is related to disease outcomes, with lactate attracting specific attention. 2 Recent reviews of breast cancer screening programs have raised concerns and increased public awareness of over treatment. The scientific community needs to shift focus from improving cancer detection alone to pursuing novel methods of distinguishing aggressive breast cancers from those which will remain indolent. HP-MRI offers the opportunity to identify aggressive tumour phenotypes and help monitor/predict therapeutic response. Here we report one of the first cases of breast cancer imaged using HP-MRI alongside correlative conventional imaging, including breast MRI.

14.
J Inherit Metab Dis ; 42(5): 839-849, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31111503

RESUMO

Triosephosphate isomerase (TPI) deficiency is a fatal genetic disorder characterized by hemolytic anemia and neurological dysfunction. Although the enzyme defect in TPI was discovered in the 1960s, the exact etiology of the disease is still debated. Some aspects indicate the disease could be caused by insufficient enzyme activity, whereas other observations indicate it could be a protein misfolding disease with tissue-specific differences in TPI activity. We generated a mouse model in which exchange of a conserved catalytic amino acid residue (isoleucine to valine, Ile170Val) reduces TPI specific activity without affecting the stability of the protein dimer. TPIIle170Val/Ile170Val mice exhibit an approximately 85% reduction in TPI activity consistently across all examined tissues, which is a stronger average, but more consistent, activity decline than observed in patients or symptomatic mouse models that carry structural defect mutant alleles. While monitoring protein expression levels revealed no evidence for protein instability, metabolite quantification indicated that glycolysis is affected by the active site mutation. TPIIle170Val/Ile170Val mice develop normally and show none of the disease symptoms associated with TPI deficiency. Therefore, without the stability defect that affects TPI activity in a tissue-specific manner, a strong decline in TPI catalytic activity is not sufficient to explain the pathological onset of TPI deficiency.


Assuntos
Anemia Hemolítica Congênita não Esferocítica/patologia , Erros Inatos do Metabolismo dos Carboidratos/patologia , Domínio Catalítico/genética , Triose-Fosfato Isomerase/deficiência , Triose-Fosfato Isomerase/genética , Anemia Hemolítica Congênita não Esferocítica/enzimologia , Animais , Comportamento Animal , Erros Inatos do Metabolismo dos Carboidratos/enzimologia , Modelos Animais de Doenças , Estabilidade Enzimática , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Multimerização Proteica
15.
Br J Cancer ; 121(1): 51-64, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31114017

RESUMO

BACKGROUND: Previous studies suggested that the metabolism is differently reprogrammed in the major subtypes of non-small cell lung cancer (NSCLC), squamous cell carcinomas (SCC) and adenocarcinomas (AdC). However, a comprehensive analysis of this differential metabolic reprogramming is lacking. METHODS: Publicly available gene expression data from human lung cancer samples and cell lines were analysed. Stable isotope resolved metabolomics were performed on SCC and ADC tumours in human patients and in freshly resected tumour slices. RESULTS: Analysis of multiple transcriptomics data from human samples identified a SCC-distinguishing enzyme gene signature. SCC tumours from patients infused with [U-13C]-glucose and SCC tissue slices incubated with stable isotope tracers demonstrated differential glucose and glutamine catabolism compared to AdCs or non-cancerous lung, confirming increased activity through pathways defined by the SCC metabolic gene signature. Furthermore, the upregulation of Notch target genes was a distinguishing feature of SCCs, which correlated with the metabolic signature. Notch and MYC-driven murine lung tumours recapitulated the SCC-distinguishing metabolic reprogramming. However, the differences between SCCs and AdCs disappear in established cell lines in 2D culture. CONCLUSIONS: Our data emphasise the importance of studying lung cancer metabolism in vivo. They also highlight potential targets for therapeutic intervention in SCC patients including differentially expressed enzymes that catalyse reactions in glycolysis, glutamine catabolism, serine, nucleotide and glutathione biosynthesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Receptores Notch/fisiologia , Adenocarcinoma de Pulmão/metabolismo , Animais , Carcinoma de Células Escamosas/metabolismo , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-myc/fisiologia , Transcriptoma , Microambiente Tumoral
16.
Br J Cancer ; 120(9): 957, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30867565

RESUMO

This article was originally published under a CC BY NC SA License, but has now been made available under a CC BY 4.0 License.

17.
Nature ; 566(7744): 403-406, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30728499

RESUMO

Most tumours have an aberrantly activated lipid metabolism1,2 that enables them to synthesize, elongate and desaturate fatty acids to support proliferation. However, only particular subsets of cancer cells are sensitive to approaches that target fatty acid metabolism and, in particular, fatty acid desaturation3. This suggests that many cancer cells contain an unexplored plasticity in their fatty acid metabolism. Here we show that some cancer cells can exploit an alternative fatty acid desaturation pathway. We identify various cancer cell lines, mouse hepatocellular carcinomas, and primary human liver and lung carcinomas that desaturate palmitate to the unusual fatty acid sapienate to support membrane biosynthesis during proliferation. Accordingly, we found that sapienate biosynthesis enables cancer cells to bypass the known fatty acid desaturation pathway that is dependent on stearoyl-CoA desaturase. Thus, only by targeting both desaturation pathways is the in vitro and in vivo proliferation of cancer cells that synthesize sapienate impaired. Our discovery explains metabolic plasticity in fatty acid desaturation and constitutes an unexplored metabolic rewiring in cancers.


Assuntos
Ácidos Graxos/química , Ácidos Graxos/metabolismo , Redes e Vias Metabólicas , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Ácidos Graxos Dessaturases/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Ácidos Oleicos/metabolismo , Palmitatos/metabolismo , Ácidos Palmíticos/metabolismo , Estearoil-CoA Dessaturase/metabolismo
18.
Dis Model Mech ; 11(8)2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30154190

RESUMO

Metabolic reprogramming is now well established as one of the hallmarks of cancer. The renewed interest in this topic has spurred a remarkable advance in our understanding of the metabolic alterations in cancer cells and in the tumour microenvironment. Initially, this research focussed on identifying the metabolic processes that provided cancer cells with building blocks for growth or to prevent oxidative damage and death. In addition to providing detailed insight into the mechanisms by which oncogenic signalling pathways modulate metabolic processes, this research also revealed multiple nodes within the metabolic network that can be targeted for the selective elimination of cancer cells. However, recent years have seen a paradigm shift in the field of cancer metabolism; while early studies focussed mainly on the metabolic processes within a cancer cell, recent approaches also consider the impact of metabolic cross-talk between different cell types within the tumour or study cancer within the organismal metabolic context. The Review articles presented in this themed Special Collection of Disease Models & Mechanisms aim to provide an overview of the recent advances in the field. The Collection also contains research articles that describe how metabolic inhibition can improve the efficacy of targeted therapy and introduce a new zebrafish model to study metabolic tumour-host interactions. We also present 'A model for life' interviews: a new interview with Karen Vousden and a previously published one with Lewis Cantley that provide insight into these two leaders' personal scientific journeys that resulted in seminal discoveries in the field of cancer metabolism. In this Editorial, we summarise some of the key insights obtained from studying cancer metabolism. We also describe some of the many exciting developments in the field and discuss its future challenges.


Assuntos
Neoplasias/metabolismo , Animais , Plasticidade Celular , Dieta , Humanos , Metástase Neoplásica , Neoplasias/terapia
19.
Mol Syst Biol ; 13(10): 940, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978620

RESUMO

Cyclin-dependent kinases (CDK) are rational cancer therapeutic targets fraught with the development of acquired resistance by tumor cells. Through metabolic and transcriptomic analyses, we show that the inhibition of CDK4/6 leads to a metabolic reprogramming associated with gene networks orchestrated by the MYC transcription factor. Upon inhibition of CDK4/6, an accumulation of MYC protein ensues which explains an increased glutamine metabolism, activation of the mTOR pathway and blunting of HIF-1α-mediated responses to hypoxia. These MYC-driven adaptations to CDK4/6 inhibition render cancer cells highly sensitive to inhibitors of MYC, glutaminase or mTOR and to hypoxia, demonstrating that metabolic adaptations to antiproliferative drugs unveil new vulnerabilities that can be exploited to overcome acquired drug tolerance and resistance by cancer cells.


Assuntos
Perfilação da Expressão Gênica/métodos , Metabolômica/métodos , Neoplasias/metabolismo , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piridinas/farmacologia , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Glutamina/metabolismo , Células HCT116 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células MCF-7 , Neoplasias/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
20.
Cancer Res ; 77(16): 4355-4364, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28630053

RESUMO

Different pyruvate kinase isoforms are expressed in a tissue-specific manner, with pyruvate kinase M2 (PKM2) suggested to be the predominant isoform in proliferating cells and cancer cells. Because of differential regulation of enzymatic activities, PKM2, but not PKM1, has been thought to favor cell proliferation. However, the role of PKM2 in tumorigenesis has been recently challenged. Here we report that increased glucose catabolism through glycolysis and increased pyruvate kinase activity in c-MYC-driven liver tumors are associated with increased expression of both PKM1 and PKM2 isoforms and decreased expression of the liver-specific isoform of pyruvate kinase, PKL. Depletion of PKM2 at the time of c-MYC overexpression in murine livers did not affect c-MYC-induced tumorigenesis and resulted in liver tumor formation with decreased pyruvate kinase activity and decreased catabolism of glucose into alanine and the Krebs cycle. An increased PKM1/PKM2 ratio by ectopic PKM1 expression further decreased glucose flux into serine biosynthesis and increased flux into lactate and the Krebs cycle, resulting in reduced total levels of serine. However, these changes also did not affect c-MYC-induced liver tumor development. These results suggest that increased expression of PKM2 is not required to support c-MYC-induced tumorigenesis in the liver and that various PKM1/PKM2 ratios and pyruvate kinase activities can sustain glucose catabolism required for this process. Cancer Res; 77(16); 4355-64. ©2017 AACR.


Assuntos
Glucose/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piruvato Quinase/metabolismo , Animais , Genes myc , Isoenzimas , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-myc/genética , Piruvato Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...