Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Int J Biol Macromol ; 272(Pt 2): 132890, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38848829

RESUMO

The lack of more effective therapies for breast cancer has enhanced mortality among breast cancer patients. Recent efforts have established efficient treatments to reduce breast cancer-related deaths. The ever-increasing attraction to employing biocompatible polysaccharide-based nanostructures as delivery systems has created interest in various disease therapies, especially breast cancer treatment. A wide range of therapeutic cargo comprising bioactive or chemical drugs, oligonucleotides, peptides, and targeted biomarkers have been considered to comprehend their anti-cancer effects against breast cancer. Some limitations of naked agents or undesired constructs, such as no or low bioavailability, enzymatic digestion, short-range stability, low-cellular uptake, poor solubility, and low surface area, have lessened their effectiveness. However, nanoscale formulations of therapeutic ingredients have provided a promising platform to address the mentioned concerns. For instance, some capable polysaccharides, including cellulose, pectin, chitosan, alginate, and dextran, were developed as breast cancer therapeutics with great nanoparticle structures. This review carefully examines the characteristics of beneficial polysaccharides that are utilized in the formation of nanoparticles (NPs). It also highlights the applications of antisense oligonucleotides (ASOs), and NPs made from polysaccharides in the treatment of breast cancer and suggests ways to enhance these particles for future research.


Assuntos
Neoplasias da Mama , Nanoestruturas , Oligonucleotídeos Antissenso , Polissacarídeos , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Polissacarídeos/química , Feminino , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/uso terapêutico , Nanoestruturas/química , Sistemas de Liberação de Medicamentos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Nanopartículas/química
2.
Int J Biol Macromol ; 272(Pt 1): 132710, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825266

RESUMO

Breast cancer is one of the leading causes of death in women and is a prevalent kind of cancerous growth, representing a substantial risk to women's health. Early detection of breast cancer is essential for effective treatment and improved survival rates. Biomarkers, active substances that signal the existence and advancement of a tumor, play a significant role in the early detection of breast cancer. Hence, accurate identification of biomarkers for tumors is crucial for diagnosing and treating breast cancer. However, the primary diagnostic methods used for the detection of breast cancer require specific equipment, skilled professionals, and specialized analysis, leading to elevated detection expenses. Regarding this obstacle, recent studies emphasize electrochemical biosensors as more advanced and sensitive detection tools compared to traditional methods. Electrochemical biosensors are employed to identify biomarkers that act as unique indicators for the onset, recurrence, and monitoring of therapeutic interventions for breast cancer. This study aims to provide a summary of the electrochemical biosensors that have been employed for the detection of breast cancer at an early stage over the past decade. Initially, the text provides concise information about breast cancer and tumor biomarkers. Subsequently, an in-depth analysis is conducted to systematically review the progress of electrochemical biosensors developed for the stable, specific, and sensitive identification of biomarkers associated with breast cancer. Particular emphasis was given to crucial clinical biomarkers, specifically the human epidermal growth factor receptor-2 (HER2). The analysis then explores the limitations and challenges inherent in the design of effective biosensors for diagnosing and treating breast cancer. Ultimately, we provided an overview of future research directions and concluded by outlining the advantages of electrochemical biosensor approaches.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Neoplasias da Mama , Detecção Precoce de Câncer , Técnicas Eletroquímicas , Receptor ErbB-2 , Humanos , Técnicas Biossensoriais/métodos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Receptor ErbB-2/análise , Receptor ErbB-2/metabolismo , Feminino , Biomarcadores Tumorais/análise , Técnicas Eletroquímicas/métodos , Detecção Precoce de Câncer/métodos
3.
J Photochem Photobiol B ; 257: 112961, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38917719

RESUMO

BACKGROUND: Ultraviolet-B (UVB) radiation is the leading environmental cause of skin damage and photoaging. The epidermis and dermis layers of the skin mainly absorb UVB. UVB stimulates apoptosis, cell cycle arrest, generation of reactive oxygen species, and degradation of collagen and elastin fibers. OBJECTIVE: This study investigated the potential of human growth hormone (hGH) in protecting the skin fibroblasts and keratinocytes (HFFF-2 and HaCaT cell lines) from UVB-induced damage. METHODS: The MTT assay was performed to evaluate UVB-induced mitochondrial damage via assessing the mitochondrial dehydrogenase activity, and flow cytometry was carried out to investigate the effects of UVB and hGH on the cell cycle and apoptosis of UVB-irradiated cells. In addition, the fold change mRNA expression levels of Type I collagen and elastin in HFFF-2 cells were evaluated using the qRT-PCR method following UVB exposure. RESULTS: We observed that treatment of cells with hGH before UVB exposure inhibited UVB-induced loss of mitochondrial dehydrogenase activity, apoptosis, and sub-G1 population formation in both cell lines. We also found that hGH-treated HFFF-2 cells showed up-regulated mRNA expression of Type I collagen, elastin, and IGF-1 in response to UVB irradiation. CONCLUSION: These findings suggest hGH as a potential anti-UVB compound that can protect skin cells from UVB-induced damage. Our findings merit further investigation and can be used to better understand the role of hGH in skin photoaging.

4.
Heliyon ; 10(8): e29736, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681607

RESUMO

Gene expression profiling is a powerful tool that has been extensively used to investigate the underlying biology and etiology of diseases, including cancer. Microarray gene expression analysis enables simultaneous measurement of thousands of mRNA levels. Sophisticated computational approaches have evolved in parallel with the rapid progress in bioassay technologies, enabling more effective analysis of the large and complex datasets that these technologies produce. In this study, we utilized systems biology approaches to examine gene expression profiles across different grades of breast cancer progression. We conducted a meta-analysis of publicly available microarray data to elucidate the molecular mechanisms underlying breast cancer grade classification. Our results suggest that while grade index is commonly used for evaluating cancer progression status in the clinic, the complexity of molecular mechanisms, histological characteristics, and other factors related to patient outcomes raises doubts about the utility of breast cancer grades as a foundation for formulating treatment protocols. Our study underscores the importance of advancing personalized strategies for breast cancer classification and management. More research is crucial to refine diagnostic tools and treatment modalities, aiming for greater precision and tailored care in patient outcomes.

5.
Int J Biol Macromol ; 265(Pt 1): 130641, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460623

RESUMO

Due to its involvement in skin maintenance and repair, topical administration of recombinant human growth hormone (rhGH) is an interesting strategy for therapeutic purposes. We have formulated and characterized a topical rhGH-loaded liposomal formulation (rhGH-Lip) and evaluated its safety, biological activity, and preventive role against UVB-induced skin damage. The rhGH-Lip had an average size and zeta potential of 63 nm and -33 mV, respectively, with 70 % encapsulation efficiency. The formulation was stable at 4 °C for at least one year. The SDS-PAGE and circular dichroism results showed no structural alterations in rhGH upon encapsulation. In vitro, studies in HaCaT, HFFF-2, and Ba/F3-rhGHR cell lines confirmed the safety and biological activity of rhGH-Lip. Franz diffusion cell study showed increased rhGH skin permeation compared to free rhGH. Animal studies in nude mice showed that liposomal rhGH prevented UVB-induced epidermal hyperplasia, angiogenesis, wrinkle formation, and collagen loss, as well as improving skin moisture. The results of this study show that rhGH-Lip is a stable, safe, and effective skin delivery system and has potential as an anti-wrinkle formulation for topical application. This study also provides a new method for the topical delivery of proteins and merits further investigation.


Assuntos
Hormônio do Crescimento Humano , Camundongos , Animais , Humanos , Hormônio do Crescimento Humano/farmacologia , Hormônio do Crescimento Humano/metabolismo , Camundongos Nus , Pele/metabolismo , Lipossomos/metabolismo , Absorção Cutânea
6.
Iran J Basic Med Sci ; 27(2): 122-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38234663

RESUMO

Lung cancer is one of the leading causes of death among all cancer deaths. This cancer is classified into two different histological subtypes: non-small cell lung cancer (NSCLC), which is the most common subtype, and small cell lung cancer (SCLC), which is the most aggressive subtype. Understanding the molecular characteristics of lung cancer has expanded our knowledge of the cellular origins and molecular pathways affected by each of these subtypes and has contributed to the development of new therapies. Traditional treatments for lung cancer include surgery, chemotherapy, and radiotherapy. Advances in understanding the nature and specificity of lung cancer have led to the development of immunotherapy, which is the newest and most specialized treatment in the treatment of lung cancer. Each of these treatments has advantages and disadvantages and causes side effects. Today, combination therapy for lung cancer reduces side effects and increases the speed of recovery. Despite the significant progress that has been made in the treatment of lung cancer in the last decade, further research into new drugs and combination therapies is needed to extend the clinical benefits and improve outcomes in lung cancer. In this review article, we discussed common lung cancer treatments and their combinations from the most advanced to the newest.

7.
Daru ; 32(1): 133-144, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38168007

RESUMO

PURPOSE: Despite the advances in treatment, lung cancer is a global concern and necessitates the development of new treatments. Biguanides like metformin (MET) and artemisinin (ART) have recently been discovered to have anti-cancer properties. As a consequence, in the current study, the anti-cancer effect of MET and ART co-encapsulated in niosomal nanoparticles on lung cancer cells was examined to establish an innovative therapy technique. METHODS: Niosomal nanoparticles (Nio-NPs) were synthesized by thin-film hydration method, and their physicochemical properties were assessed by FTIR. The morphology of Nio-NPs was evaluated with FE-SEM and AFM. The MTT assay was applied to evaluate the cytotoxic effects of free MET, free ART, their encapsulated form with Nio-NPs, as well as their combination, on A549 cells. Apoptosis assay was utilized to detect the biological processes involved with programmed cell death. The arrest of cell cycle in response to drugs was assessed using a cell cycle assay. Following a 48-h drug treatment, the expression level of hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and 7 genes were assessed using the qRT-PCR method. RESULTS: Both MET and ART reduced the survival rate of lung cancer cells in the dose-dependent manner. The IC50 values of pure ART and MET were 195.2 µM and 14.6 mM, respectively while in nano formulated form their IC50 values decreased to 56.7 µM and 78.3 µM, respectively. The combination of MET and ART synergistically decreased the proliferation of lung cancer cells, compared to the single treatments. Importantly, the combination of MET and ART had a higher anti-proliferative impact against A549 lung cancer cells, with lower IC50 values. According to the result of Real-time PCR, hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and Caspase 7 genes expression were considerably altered in treated with combination of nano formulated MET and ART compared to single therapies. CONCLUSION: The results of this study showed that the combination of MET and ART encapsulated in Nio-NPs could be useful for the treatment of lung cancer and can increase the efficiency of lung cancer treatment.


Assuntos
Apoptose , Artemisininas , Neoplasias Pulmonares , Metformina , Nanopartículas , Humanos , Artemisininas/farmacologia , Artemisininas/química , Artemisininas/administração & dosagem , Metformina/farmacologia , Metformina/química , Metformina/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Apoptose/efeitos dos fármacos , Nanopartículas/química , Níquel/química , Polietilenoglicóis/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Lipossomos/química , Proliferação de Células/efeitos dos fármacos
8.
Heliyon ; 9(11): e21400, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954331

RESUMO

Background: Colorectal cancer (CRC) is a prevalent type of cancer, ranking third in incidence and fourth in cancer-related deaths globally. The increase in mortality rates related to colorectal cancer among younger patients is a cause for concern. Chemotherapy is the primary approach for palliative care in colon cancer, but the development of drug resistance limits its effectiveness. Apoptosis is a process of programmed cell death that plays a crucial role in regulating normal cell death and abnormal tissue degeneration in cancer. Genes such as caspase-3, caspase-9, p53, and survivin are involved in apoptosis induction. The field of nanotechnology has presented exciting opportunities for controlled drug delivery and addressing drug resistance in cancer. Niosomes are among the nanocarriers known for their impressive features, making them excellent candidates for drug delivery. In the current study, we investigate whether niosomal nanoparticles coated with FA have the ability to deliver oxaliplatin to drug-resistant cells effectively and potentially resistance reversion in colon cancer cells. Methods: The niosomal nanoparticles (NPs) were fabricated using the thin-film hydration method and characterized using DLS (Dynamic Light Scattering), FTIR (Fourier Transform Infrared Spectroscopy), SEM (Scanning Electron Microscopy), and AFM (Atomic Force Microscopy) systems. The drug release and drug encapsulation efficiency of the NPs were also determined. An MTT assay was performed on oxaliplatin-resistant cells to determine the IC50 values of the drug in its pure and nano-encapsulated forms. Gene expression of caspase-3, caspase-9, p53, and survivin was investigated using the qRT-PCR (quantitative Reverse Transcription Polymerase Chain Reaction) technique, and cell apoptosis or necrosis was quantified using flow cytometry. Results: Size, PDI, zeta potential, morphology, drug release, and encapsulation efficiency of fabricated niosomal NPs were acceptable. Oxaliplatin anti-cancer drug showed a higher impact on cancerous cells in nano-encapsulated form. The expression level of caspase-3, caspase-9, and p53 was increased which was in confirmation by flow cytometry results. Conclusion: Taken together, results of this study demonstrated potential effect of folate decorated oxaliplatin-loaded niosomal NPs to resistance-reversion of Oxaliplatin-resistance colon cancer cells.

9.
Front Oncol ; 13: 1193708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664043

RESUMO

Background: Despite current therapies, lung cancer remains a global issue and requires the creation of novel treatment methods. Recent research has shown that biguanides such as metformin (MET) and silibinin (SIL) have a potential anticancer effect. As a consequence, the effectiveness of MET and SIL in combination against lung cancer cells was investigated in this study to develop an effective and novel treatment method. Methods: Niosomal nanoparticles were synthesized via the thin-film hydration method, and field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FTIR), atomic force microscopy (AFM), and dynamic light scattering (DLS) techniques were used to evaluate their physico-chemical characteristics. The cytotoxic effects of free and drug-loaded nanoparticles (NPs), as well as their combination, on A549 cells were assessed using the MTT assay. An apoptosis test was used while under the influence of medication to identify the molecular mechanisms behind programmed cell death. With the use of a cell cycle test, it was determined whether pharmaceutical effects caused the cell cycle to stop progressing. Additionally, the qRT-PCR technique was used to evaluate the levels of hTERT, BAX, and BCL-2 gene expression after 48-h medication treatment. Results: In the cytotoxicity assay, the growth of A549 lung cancer cells was inhibited by both MET and SIL. Compared to the individual therapies, the combination of MET and SIL dramatically and synergistically decreased the IC50 values of MET and SIL in lung cancer cells. Furthermore, the combination of MET and SIL produced lower IC50 values and a better anti-proliferative effect on A549 lung cancer cells. Real-time PCR results showed that the expression levels of hTERT and BCL-2 were significantly reduced in lung cancer cell lines treated with MET and SIL compared to single treatments (p< 0.001). Conclusion: It is anticipated that the use of nano-niosomal-formed MET and SIL would improve lung cancer treatment outcomes and improve the therapeutic efficiency of lung cancer cells.

10.
Med Oncol ; 40(9): 255, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515667

RESUMO

The high incidence rate coupled with significant mortality makes colorectal cancer one of the most prevalent and devastating cancers worldwide. Research is currently underway to explore new forms of treatment that could potentially maximize treatment outcomes while minimizing the side effects associated with conventional chemotherapy. Metformin, a natural biguanide drug, has anti-cancer properties that can inhibit the growth and proliferation of cancer cells. However, due to its short half-life and low bioavailability, the efficacy of Metf as an anti-cancer agent is limited. The purpose of this research is to assess the potency of PEGylated niosomes as a nano-delivery system for Metf, with the aim of increasing its anti-cancer effects on CaCo2 colorectal cancer cells through the effect on the expression of genes, including GPR75, hTERT, Bax, Bcl2, and Cyclin D1. Metf-loaded niosomal NPs (N-Metf) were synthesized using the thin-film hydration method and then characterized using SEM, FTIR, AFM, and DLS techniques. The release pattern of the drug from the nanoparticles (NPS) was determined using the dialysis membrane method. Furthermore, the cytotoxic effect of the metformin-loaded PEGylated niosome on the CaCo2 cell line was evaluated by the MTT test. Additionally, an apoptosis assay was conducted to assess the effect of free Metf and Metf-loaded NPS on the programmed death of the CaCo2 cells, and the impact on the cell cycle was studied through a cell cycle test. Finally, the expression levels of hTERT, Cyclin D1, BCL2, GPR75, and BAX genes were assessed in the presence of free Metf and Metf-loaded NPs by RT-PCR. Characterization experiments showed successful loading of metformin into PEGylated niosomes. The results of cytotoxicity evaluation showed that Metf-NPs had more cytotoxicity than free Metf in a dose-dependent manner. Furthermore, nuclear fragmentation and the percentage of apoptotic cells induced by Metf-NPs were significantly higher than those induced by free Metf. Additionally, Metf-NPs were found to induce more cell cycle arrest at the sub-G1 checkpoint than free Metf did. Compared with Metf-treated cells, the mRNA expression levels of GPR75, Cyclin D1, and hTERT were significantly changed in cells treated with Metf-NPs. Ultimately, it is hypothesized the nano-encapsulation of Metf into PEGylated niosomal NPs could be a worthwhile drug delivery system to enhance its effectiveness in treating colorectal cancer cells.


Assuntos
Neoplasias do Colo , Metformina , Nanopartículas , Humanos , Metformina/farmacologia , Ciclina D1 , Lipossomos , Células CACO-2 , Proteína X Associada a bcl-2 , Neoplasias do Colo/tratamento farmacológico , Polietilenoglicóis , Receptores Acoplados a Proteínas G
11.
Front Pharmacol ; 14: 1174120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441534

RESUMO

Introduction: In recent years, various nanoparticles (NPs) have been discovered and synthesized for the targeted therapy of cancer cells. Targeted delivery increases the local concentration of therapeutics and minimizes side effects. Therefore, NPs-mediated targeted drug delivery systems have become a promising approach for the treatment of various cancers. As a result, in the current study, we aimed to design silibinin-loaded magnetic niosomes nanoparticles (MNNPs) and investigate their cytotoxicity property in colorectal cancer cell treatment. Methods: MNPs ferrofluids were prepared and encapsulated into niosomes (NIOs) by the thin film hydration method. Afterward, the morphology, size, and chemical structure of the synthesized MNNPs were evaluated using the TEM, DLS, and FT-IR techniques, respectively. Results and Discussion: The distribution number of MNNPs was obtained at about 50 nm and 70 nm with a surface charge of -19.0 mV by TEM and DLS analysis, respectively. Silibinin loading efficiency in NIOs was about 90%, and the drug release pattern showed a controlled release with a maximum amount of about 49% and 70%, within 4 h in pH = 7.4 and pH = 5.8, respectively. To investigate the cytotoxicity effect, HT-29 cells were treated with the various concentration of the drugs for 24 and 48 h and evaluated by the MTT as well as flow cytometry assays. Obtained results demonstrated promoted cell cytotoxicity of silibinin-loaded MNNPs (5-fold decrease in cell viability) compared to pure silibinin (3-fold decrease in cell viability) while had no significant cytotoxic effect on HEK-293 (normal cell line) cells, and the cellular uptake level of MNNPs by the HT-29 cell line was enhanced compared to the control group. In conclusion, silibinin-loaded MNNPs complex can be considered as an efficient treatment approach for colorectal cancer cells.

12.
Asian Pac J Cancer Prev ; 24(6): 2089-2097, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37378940

RESUMO

BACKGROUND: Prostate cancer is one of the most widespread cancers in the world. Early diagnosis is the most important factor in treatment efficiency. Furthermore, new methods for early diagnosis and treatment play an important role. In this study, we designed targeted conjugation of antibodies with iron nanoparticles and evaluated the binding properties of antibodies to prostate cancers and benign tissues. This method in addition to having a lower cost has high sensitivity and specificity. METHODS: Anti- PSCA antibodies were purified and conjugated to super magnetic oxide nanoparticles (SPION). Then, iron staining on prostate adenocarcinoma tissues was performed. At the same time, immunohistochemically staining was performed on similar tissues to compare the results. In addition, benign prostatic hyperplasia (BPH) samples were used as a control sample. RESULTS: In adenocarcinoma tissues with iron staining, many blue spots are seen compared to benign tissues, and the number of these spots increases with increasing tumor grade. CONCLUSION: These findings indicate the characteristic of iron staining as a conjugate antibody to iron can be an appropriate approach to specific staining of tumor markers in cancer tissues and can be used to diagnose prostate cancer due to its safety, low cost, sensitivity, and specificity.


Assuntos
Adenocarcinoma , Hiperplasia Prostática , Neoplasias da Próstata , Masculino , Humanos , Detecção Precoce de Câncer , Neoplasias da Próstata/patologia , Hiperplasia Prostática/metabolismo , Anticorpos , Adenocarcinoma/patologia , Fenômenos Magnéticos
13.
Adv Pharm Bull ; 13(2): 317-327, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37342377

RESUMO

Purpose: Mesoporous silica nanoparticles (MSNs) have drawn substantial interest as drug nanocarriers for breast cancer therapy. Nevertheless, because of the hydrophilic surfaces, the loading of well-known hydrophobic polyphenol anticancer agent curcumin (Curc) into MSNs is usually very low. Methods: For this purpose, Curc molecules were loaded into amine-functionalized MSNs (MSNs-NH2 -Curc) and characterized using thermal gravimetric analysis (TGA), Fourier-transform infrared (FTIR), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET). MTT assay and confocal microscopy, respectively, were used to determine the cytotoxicity and cellular uptake of the MSNs-NH2 - Curc in the MCF-7 breast cancer cells. Besides, the expression levels of apoptotic genes were evaluated via quantitative polymerase chain reaction (qPCR) and western blot. Results: It was revealed that MSNs-NH2 possessed high values of drug loading efficiency and exhibited slow and sustained drug release compared to bare MSNs. According to the MTT findings, while the MSNs-NH2 -Curc were nontoxic to the human non-tumorigenic MCF-10A cells at low concentrations, it could considerably decrease the viability of MCF-7 breast cancer cells compared to the free Curc in all concentrations after 24, 48 and 72 hours exposure times. A cellular uptake study using confocal fluorescence microscopy confirmed the higher cytotoxicity of MSNs-NH2 -Curc in MCF-7 cells. Further, it was found that the MSNs-NH2 -Curc could drastically affect the mRNA and protein levels of Bax, Bcl-2, caspase 3, caspase 9, and hTERT relative to the free Curc treatment. Conclusion: Taken together, these preliminary results suggest the amine-functionalized MSNs-based drug delivery platform as a promising alternative approach for Curc loading and safe breast cancer treatment.

14.
Heliyon ; 9(6): e16309, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37292328

RESUMO

Nanomaterials indicate unique physicochemical properties for drug delivery in osteogenesis. Benefiting from high surface area grades, high volume ratio, ease of functionalization by biological targeting moieties, and small size empower nanomaterials to pass through biological barriers for efficient targeting. Inorganic nanomaterials for bone regeneration include inorganic synthetic polymers, ceramic nanoparticles, metallic nanoparticles, and magnetic nanoparticles. These nanoparticles can effectively modulate macrophage polarization and function, as one of the leading players in osteogenesis. Bone healing procedures in close cooperation with the immune system. Inflammation is one of the leading triggers of the bone fracture healing barrier. Macrophages commence anti-inflammatory signaling along with revascularization in the damaged site to promote the formation of a soft callus, bone mineralization, and bone remodeling. In this review, we will discuss the role of macrophages in bone hemostasis and regeneration. Furthermore, we will summarize the influence of the various inorganic nanoparticles on macrophage polarization and function in the benefit of osteogenesis.

15.
Mol Biol Rep ; 50(7): 5687-5695, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37209326

RESUMO

BACKGROUND: Janus kinase 2 (JAK2) V617F gene mutation is an important marker for the diagnosis of Philadelphia negative Myeloproliferative neoplasms (MPN) which is subdivided into Polycythemia Vera (PV), Primary Myelofibrosis (PMF), and Essential Thrombocythemia (ET). The aim here is to investigate the JAK2 allele burden of the patients diagnosed with the subgroups of MPN and to demonstrate the alterations of hematological parameters and spleen size between diagnosis and 6 months of treatment. METHODS: A total of 107 patients with the diagnosis of MPN and negative Philadelphia chromosome, 51 males and 56 females with a mean age of 59,74 ± 16,41 years, were included in the study. Diagnosis of MPN was based on the World Health Organization (WHO) criteria. Subgroups of MPN distributed as 49,5% ET, 46,7% PV, and 3,8% PMF. Findings such as the age of the patients, JAK-2 allele burden, and laboratory findings of splenomegaly were examined at the time of diagnosis, 3rd month, and 6th month. JAK2 allele burden and spleen size were re-evaluated in 6th month. RESULTS: Our study confirmed the findings of high Hb, HCT, and RBC but low platelet values in PV patients with high JAK2 allele burden with respect to other groups, a positive correlation between JAK2 allele burden and LDH. CONCLUSIONS: A novel finding of our study is, that there is not any reducing effect of the phlebotomy on JAK2 allele burden in PV patients whether they receive phlebotomy or not. Evaluation of the spleen size alteration during 6 months within the subgroups demonstrated a decrease in PV and ET groups whereas no statistically significant difference was found in the PMF group.


Assuntos
Transtornos Mieloproliferativos , Policitemia Vera , Trombocitemia Essencial , Feminino , Humanos , Masculino , Alelos , Janus Quinase 2/genética , Mutação/genética , Transtornos Mieloproliferativos/genética , Policitemia Vera/genética , Trombocitemia Essencial/diagnóstico , Pessoa de Meia-Idade , Adulto , Idoso
16.
Asian Pac J Cancer Prev ; 24(5): 1817-1825, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37247305

RESUMO

In recent years, molecular targeted therapy has attracted more attention from researchers due to its high efficiency and fewer side effects. Researchers are attempting to find more specific ways to treat diseases. It has been found that there are different targets for the treatment of diseases such as cancer, obesity, and metabolic syndrome. It is important to find a potential target in order to lessen the side effects of current treatments. G Protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that are expressed in many organs, leading to the activation of internal signal transduction cascades through the binding of different ligands, including neurotransmitters, peptides, and lipids. Due to the critical role of GPCRs in cells, it could be a potential target. G protein-coupled receptor 75 (GPR75) is a novel member of the GPCR family that has an important role in many diseases, such as obesity, cancer, and metabolic syndrome. Until now, three ligands have been detected for GPR75, including 20-HETE, CCL5, and RANTES. Recent studies suggest that 20-HETE, through GPR75, triggers signaling pathways including PI3K/Akt and RAS/MAPK, leading to a more aggressive phenotype in prostate cancer cells. Additionally, the PI3K/Akt and RAS/MAPK signaling pathways activate NF-κB, which is significant in various pathways of cancer development such as proliferation, migration, and apoptosis. The findings indicate that inhibiting GPR75 in humans leads to an increase in insulin sensitivity and glucose tolerance, as well as a reduction in body fat storage. According to these discoveries, GPR75 could be a potential target for drug treatment of diseases such as obesity, metabolic syndrome, and cancer. In this review, we aimed to discuss the therapeutic impact of GPR75 in cancer, metabolic syndrome, and obesity and underscore the possible pathways.


Assuntos
Síndrome Metabólica , Neoplasias , Masculino , Humanos , Síndrome Metabólica/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt , Ligantes , Fosfatidilinositol 3-Quinases , Receptores Acoplados a Proteínas G/metabolismo , Obesidade/tratamento farmacológico , Neoplasias/tratamento farmacológico
17.
Pharmacol Rep ; 75(2): 442-455, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36859742

RESUMO

BACKGROUND: Phytochemicals and their derivatives are good options to improve treatment efficiency in cancer patients. Artemisinin (ART) and metformin (MET) are widely used phytochemicals to treat various types of cancers. However, their application because of their dose-dependent side effects, and poor bioavailability brings several challenges. Niosome is a novel nanocarrier that is the best choice to encapsulate both lipophilic and hydrophilic drugs. In this study, we synthesized and characterized various formulations of PEGylated (polyethylene glycol) niosomal nanoparticles co-loaded with ART-MET and evaluated their anticancer effect on A549 lung cancer cells. METHODS: Various formulations of PEGylated noisome were prepared by the thin-film hydration method and characterized in size, morphology, release pattern, and physicochemical structure. The cytotoxic effect of the free ART-MET and optimized PEGylated niosomal nanoparticles loaded with ART-MET on A549 cells were evaluated by MTT assay. Furthermore, the Real-time PCR (RT-PCR) technique used to evaluate apoptotic and anti-apoptotic gene expression. RESULTS: The size, encapsulation efficiency (EE), and polydispersity index (PDI) of the optimized nanoparticles are 256 nm, 95%, and 0.202, respectively. Additionally, due to the PEGylation hydrophilic character, there is a major consideration of the high impact of PEGylation on reducing niosome size. According to the results of the MTT assay, free ART-MET and ART-MET-loaded niosomal nanoparticles showed dose-dependent toxicity and inhibits the growth of A549 lung cancer cells. Furthermore, the RT-PCR results indicated that ART-MET-loaded niosomal nanoparticles have a higher anti-proliferative effect by inhibiting anti-apoptotic and inducing apoptotic gene expression in A549 lung cancer cells. CONCLUSIONS: Our study revealed that the simultaneous use of ART and MET in the optimized PEGylated niosomal nanoparticles delivery system could be an appropriate approach to improve the effectiveness of lung cancer treatment.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Humanos , Lipossomos/química , Polietilenoglicóis/química , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , Compostos Fitoquímicos
18.
Front Bioeng Biotechnol ; 11: 1128856, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873347

RESUMO

Osteoarthritis (OA) is the most common progressive condition affecting joints. It mainly affects the knees and hips as predominant weight-bearing joints. Knee osteoarthritis (KOA) accounts for a large proportion of osteoarthritis and presents numerous symptoms that impair quality of life, such as stiffness, pain, dysfunction, and even deformity. For more than two decades, intra-articular (IA) treatment options for managing knee osteoarthritis have included analgesics, hyaluronic acid (HA), corticosteroids, and some unproven alternative therapies. Before effective disease-modifying treatments for knee osteoarthritis, treatments are primarily symptomatic, mainly including intra-articular corticosteroids and hyaluronic acid, so these agents represent the most frequently used class of drugs for managing knee osteoarthritis. But research suggests other factors, such as the placebo effect, have an essential role in the effectiveness of these drugs. Several novel intra-articular therapies are currently in the clinical trial processes, such as biological therapies, gene and cell therapies. Besides, it has been shown that the development of novel drug nanocarriers and delivery systems could improve the effectiveness of therapeutic agents in osteoarthritis. This review discusses the various treatment methods and delivery systems for knee osteoarthritis and the new agents that have been introduced or are in development.

19.
J Interferon Cytokine Res ; 43(2): 65-76, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36795973

RESUMO

Although the new generation of vaccines and anti-COVID-19 treatment regimens facilitated the management of acute COVID-19 infections, concerns about post-COVID-19 syndrome or Long Covid are rising. This issue can increase the incidence and morbidity of diseases such as diabetes, and cardiovascular, and lung infections, especially among patients suffering from neurodegenerative disease, cardiac arrhythmias, and ischemia. There are numerous risk factors that cause COVID-19 patients to experience post-COVID-19 syndrome. Three potential causes attributed to this disorder include immune dysregulation, viral persistence, and autoimmunity. Interferons (IFNs) are crucial in all aspects of post-COVID-19 syndrome etiology. In this review, we discuss the critical and double-edged role of IFNs in post-COVID-19 syndrome and how innovative biomedical approaches that target IFNs can reduce the occurrence of Long Covid infection.


Assuntos
COVID-19 , Doenças Neurodegenerativas , Humanos , Interferons/uso terapêutico , Síndrome de COVID-19 Pós-Aguda , Pulmão
20.
Asian Pac J Cancer Prev ; 24(1): 133-140, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36708561

RESUMO

OBJECTIVE: The telomerase gene is overexpressed in the majority of tumors and cancers compared to normal and healthy cells, and on the other hand, this enzymatic protein is overactive, therefore, the telomerase enzyme is considered a primary target for diagnostic and therapeutic purposes in most cancers. This has been hypothesized that Helenalin has anti-telomerase activity in a wide range of cancers and Tumor tissues. In this study, we investigated the inhibitory effect of helenalin extract on telomerase gene expression in the T47D breast cancer cell line. METHODS: We used the MTT assay to evaluate the cytotoxic effect of different concentrations of helenalin on the T47D breast cancer cell line at 24, 48, and 72 hours. Besides, the expression of the hTERT gene in T47D cell lines treated with 1.0 and 5.0 µM helenalin after 24, 48, and 72 h incubation times was investigated through real-time PCR. RESULTS: According to the MTT assay, the inhibitory effect of helenalin on T47D cell proliferation is time and dose-dependent. Moreover, the results of Real-time PCR showed that exposure of T47D cell lines to helenalin led to a significant Decreasing in the expressional values of the hTERT gene as a time and dose-dependent procedure compared with the control group (P ≤ 0.05). CONCLUSION: These preliminary results demonstrated the cytotoxic potential of helenalin through inhibition of hTERT against T47D breast cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Antineoplásicos/farmacologia , Linhagem Celular , Expressão Gênica , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...