Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37976025

RESUMO

Hypoxia, especially the chronic type, leads to disruptive results in the brain that may contribute to the pathogenesis of some neurodegenerative diseases such as Alzheimer's disease (AD). The ventrolateral medulla (VLM) contains clusters of interneurons, such as the pre-Bötzinger complex (preBötC), that generate the main respiratory rhythm drive. We hypothesized that exposing animals to chronic sustained hypoxia (CSH) might develop tauopathy in the brainstem, consequently changing the rhythmic manifestations of respiratory neurons. In this study, old (20-22 months) and young (2-3 months) male rats were subjected to CSH (10 ± 0.5% O2) for ten consecutive days. Western blotting and immunofluorescence (IF) staining were used to evaluate phosphorylated tau. Mitochondrial membrane potential (MMP or ∆ψm) and reactive oxygen species (ROS) production were measured to assess mitochondrial function. In vivo diaphragm's electromyography (dEMG) and local field potential (LFP) recordings from preBötC were employed to assess the respiratory factors and rhythmic representation of preBötC, respectively. Findings showed that ROS production increased significantly in hypoxic groups, associated with a significant decline in ∆ψm. In addition, tau phosphorylation elevated in the brainstem of hypoxic groups. On the other hand, the power of rhythms declined significantly in the preBötC of hypoxic rats, parallel with changes in the respiratory rate, total respiration time, and expiration time. Moreover, there was a positive and statistically significant correlation between LFP rhythm's power and inspiration time. Our data showed that besides CSH, aging also contributed to mitochondrial dysfunction, tau hyperphosphorylation, LFP rhythms' power decline, and changes in respiratory factors.

2.
Avicenna J Phytomed ; 12(2): 109-115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35614883

RESUMO

Objective: Nephropathy is known to be the leading cause of kidney failure in diabetic patients. Troxerutin, as a flavonoid component, could provide a novel protective strategy in the prevention of diabetic nephropathy. A large number of reports on the salutary effects of troxerutin inspired us to investigate its effect on the nephropathy signaling events (i.e., expression of TGF-ß, miRNA192, and SIP1) in type-1 induced diabetic rats. Materials and Methods: 50 male Wistar rats were divided into 5 groups including control group, sham group treated with troxerutin for 4 weeks, diabetic group induced by streptozotocin (STZ) injection, DI group including insulin-treated diabetic animals and DT group treated with troxerutin. Ultimately, rat kidneys were extracted, and the level of miR-192 (using qPCR), transforming growth factor-beta (TGF-ß), and smad interacting protein 1 (SIP1) using an ELISA kit, was measured. Results: The level of TGF-ß and miRNA192 significantly increased in the diabetic group. However, their expression levels decreased following the administration of troxerutin and insulin (p<0.05) compared to control group. SIP1 was down-regulated in the diabetic group, whereas a spike in the expression levels was observed after troxerutin administration compared to control and troxerutin groups (p<0.05). However, no significant difference was found in the effects of insulin and troxerutin on the level of miR-192, SIP1, and TGF- ß. Conclusion: According to the previous literatures, during the progression of nephropathy, TGF-ß represses SIP1 (the repression region in the collagen gene) by increasing the expression of miR-192. Ultimately, in this study, diabetes led to up-regulation of TGF-ß while troxerutin proved to have a protective effect on the kidney by increasing SIP and lowering miR-192 levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...