Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 457, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222255

RESUMO

Roasted-rice leachate fermentation, a distinctive local tobacco fermentation method in Sichuan, imparts a mellow flavor and glossy texture to tobacco leaves, along with a roasted rice aroma. In order to find out the impact of roasted-rice leachate on cigar tobacco leaves, the physicochemical properties, volatile flavor profile, and microbial community were investigated. The content of protein significantly decreased after fermentation. The volatile flavor compounds increased following roasted-rice leachate fermentation, including aldehydes, alcohols, acids, and esters. High-throughput sequencing identified Staphylococcus, Pseudomonas, Pantoea, Oceanobacillus, Delftia, Corynebacterium, Sphingomonas, Aspergillus, Weissella, and Debaryomyces as the primary genera. Network and correlation analysis showed Debaryomyces played a crucial role in roasted-rice leachate fermentation, due to its numerous connections with other microbes and positive relationships with linoelaidic acid, aromandendrene, and benzaldehyde. This study is useful for gaining insight into the relationship between flavor compounds and microorganisms and provides references regarding the effect of extra nutrients on traditional fermentation products. KEY POINTS: • Volatile flavor compounds increased following roasted-rice leachate fermentation • Staphylococcus was the primary genera in fermented cigar • Debaryomyces may improve the quality of tobacco leaves.


Assuntos
Bactérias , Fermentação , Aromatizantes , Oryza , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Aromatizantes/metabolismo , Oryza/microbiologia , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Folhas de Planta/microbiologia , Produtos do Tabaco , Paladar , Nicotiana/microbiologia , Microbiota , Odorantes/análise
2.
Cell Signal ; 113: 110968, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37951486

RESUMO

Dysregulated lipolysis is a risk factor contributing to metabolic diseases and autophagy is known to be important in lipolysis. CTCF is involved in diverse cellular processes including adipogenesis, yet its role in lipolysis or autophagy remains unknown. We identified lipolytic genes were downregulated in CTCF knockdown adipocytes based on the RNA-seq data. Further validation showed that CTCF knockdown restrained adipocyte lipolysis while overexpression of CTCF had opposite effects. Similarly, overexpression and knockdown studies demonstrated that CTCF was a positive regulator of autophagy. Treatment with autophagy inducer relieved the suppression of lipolysis caused by CTCF knockdown, while autophagy inhibitor treatment alleviated lipolysis stimulated by CTCF overexpression, indicating that CTCF regulates adipocyte lipolysis through autophagy. Mechanistically, CTCF interacted with PPARγ to coordinately enhanced lipolytic capacity. Data of chip-seq, chip-qPCR and further experiments confirmed that CTCF and PPARγ separately stimulated transactivation of autophagy regulatory protein Beclin 1, while co-expression of the two displayed synergistic effects to regulate autophagy flux. Expectedly, overexpression of Beclin 1 abolished the blockage of lipolysis and autophagy caused by CTCF knockdown. Collectively, CTCF cooperates with PPARγ to regulate autophagy via directly modulating BECLIN 1 transcription, thereby leading to increased adipocyte lipolysis.


Assuntos
Lipólise , PPAR gama , Camundongos , Animais , PPAR gama/metabolismo , Proteína Beclina-1/metabolismo , Adipócitos/metabolismo , Adipogenia , Células 3T3-L1
3.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298424

RESUMO

Black barley seeds are a health-beneficial diet resource because of their special chemical composition and antioxidant properties. The black lemma and pericarp (BLP) locus was mapped in a genetic interval of 0.807 Mb on chromosome 1H, but its genetic basis remains unknown. In this study, targeted metabolomics and conjunctive analyses of BSA-seq and BSR-seq were used to identify candidate genes of BLP and the precursors of black pigments. The results revealed that five candidate genes, purple acid phosphatase, 3-ketoacyl-CoA synthase 11, coiled-coil domain-containing protein 167, subtilisin-like protease, and caffeic acid-O-methyltransferase, of the BLP locus were identified in the 10.12 Mb location region on the 1H chromosome after differential expression analysis, and 17 differential metabolites, including the precursor and repeating unit of allomelanin, were accumulated in the late mike stage of black barley. Phenol nitrogen-free precursors such as catechol (protocatechuic aldehyde) or catecholic acids (caffeic, protocatechuic, and gallic acids) may promote black pigmentation. BLP can manipulate the accumulation of benzoic acid derivatives (salicylic acid, 2,4-dihydroxybenzoic acid, gallic acid, gentisic acid, protocatechuic acid, syringic acid, vanillic acid, protocatechuic aldehyde, and syringaldehyde) through the shikimate/chorismite pathway other than the phenylalanine pathway and alter the metabolism of the phenylpropanoid-monolignol branch. Collectively, it is reasonable to infer that black pigmentation in barley is due to allomelanin biosynthesis in the lemma and pericarp, and BLP regulates melanogenesis by manipulating the biosynthesis of its precursors.


Assuntos
Hordeum , Hordeum/genética , Hordeum/metabolismo , Melaninas/metabolismo , Catecóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...