Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 552
Filtrar
1.
Chem Biodivers ; : e202400552, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958194

RESUMO

In this study, the bioactive components, enzyme inhibitory, antioxidant and anticancer potentials of edible (L. sativa) and a new species (L. anatolica) of Lactuca were evaluated and compared. The quantitative analyzes of the bioactive components of L. sativa (LS) and L. anatolica (LA) were analyzed quantitatively by GC-MS and Orbitrab HPLC-HRMS. Antioxidant, enzyme inhibitory and anticancer properties were analyzed by various assays. In general, LA exhibited more stronger antioxidant properties compared to LS. The extracts showed similar inhibitory effects on these enzymes. It was determined that LS was dominant in terms of linoleic acid (23.71%), while LA contained a high level of α-linolenic acid (31.70%). LA and LS inhibited the viability of A549 and MCF-7 cells in a dose-dependent manner. IC50 values for LA, LS and cisplatin were determined as 120.3, 197.5, 4.3 µg/mL in A549 cell line and 286.2, 472.8, 7.2 µg/mL in MCF-7 cell line, respectively. It was revealed that LA and LS treatment at 50 µg/mL concentrations in A549 cells completely suppressed the colony forming capacity, and treatment with IC50 doses inhibited cell migration, and triggered apoptosis by regulating caspase-3, cPARP, p53 and p21. The findings of this study suggested that these species have significant pharmacological potential.

2.
Arch Pharm (Weinheim) ; : e2400257, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849325

RESUMO

The n-hexane, ethyl acetate, ethanol, ethanol/water (70% ethanol), and water extracts of Astragalus aduncus aerial parts were investigated for their antioxidant potential, enzyme inhibition activity (anti-acetylcholinesterase [AChE], anti-butyrylcholinesterase [BChE], antityrosinase, antiamylase, and antiglucosidase) and antiproliferative effect (against colon adenocarcinoma cell line [HT-29], gastric cancer cell line [HGC-27], prostate carcinoma cell line [DU-145], breast adenocarcinoma cell line [MDA-MB-231], and cervix adenocarcinoma cell line [HeLa]). In addition, the phytochemical profile of the extracts was evaluated using validated spectrophotometric and high-pressure liquid chromatography-electrospray ionization/tandem mass spectroscopy methods. Generally, the 70% ethanol extract demonstrated the strongest antioxidant properties, and it was the richest source of total phenolic constituents. Our findings indicated that the ethyl acetate extract was the most potent BChE inhibitor (11.44 mg galantamine equivalents [GALAE]/g) followed by the ethanol extract (8.51 mg GALAE/g), while the ethanol extract was the most promising AChE inhibitor (3.42 mg GALAE/g) followed by the ethanol/water extract (3.17 mg GALAE/g). Excellent tyrosinase inhibitory activity (66.25 mg kojic acid equivalent/g) was observed in ethanol/water extracts of the aerial part of A. aduncus. Тhese results showed that the most cytotoxic effects were exhibited by the ethyl acetate extract against HGC-27 cells (IC50: 36.76 µg/mL), the ethanol extract against HT-29 cells (IC50: 30.79 µg/mL), and the water extract against DU-145 cells (IC50: 37.01 µg/mL). A strong correlation was observed between the highest total flavonoid content and the highest content of individual compounds in the ethanol extract, including rutin, hyperoside, isoquercitrin, delphinidin-3,5-diglucoside (delphinidin-3,5-O-diglucoside), and kaempferol-3-glucoside (kaempferol-3-O-glucoside). In the present study, the A. aduncus plant was considered a new source of antioxidants, enzyme inhibitors, and anticancer agents and could be used as a future health-benefit natural product.

3.
Arch Pharm (Weinheim) ; : e2400194, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877616

RESUMO

Tanacetum nitens ( Boiss. & Noë)  Grierson is an aromatic perennial herb used in Turkish traditional medicine to treat headache, fever, and skin diseases. This study aimed to investigate the chemical composition, antioxidant, enzyme inhibition, and cytotoxic properties of T. nitens aerial parts. Organic solvent extracts were prepared by sequential maceration in hexane, dichloromethane, ethyl acetate, and methanol while aqueous extracts were obtained by maceration or infusion. Nuclear magnetic resonance (NMR) and LC-DAD-MS analysis allowed the identification and quantification of different phytoconstituents including parthenolide, tanacetol B, tatridin B, quinic acid derivatives, ß-sitosterol, and glycoside derivatives of quercetin and luteolin. The type and amount of these phytochemicals recovered by each solvent were variable and significant enough to impact the biological activities of the plant. Methanolic and aqueous extracts displayed the highest scavenging and ions-reducing properties while the dichloromethane and ethyl acetate extracts exerted the best total antioxidant activity and metal chelating power. Results of enzyme inhibition activity showed that the hexane, ethyl acetate, and dichloromethane extracts had comparable anti-acetylcholinesterase activity and the latter extract revealed the highest anti-butyrylcholinesterase activity. The best α-amylase and α-glucosidase inhibition activities were obtained from the hexane extract. The dichloromethane and ethyl acetate extracts exhibited the highest cytotoxic effect against the prostate carcinoma DU-145 cells. In conclusion, these findings indicated that T. nitens can be a promising source of biomolecules with potential therapeutic applications.

4.
Chem Biodivers ; : e202401209, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865194

RESUMO

This research aimed to evaluate the antidiabetic, dermatoprotective, and antibacterial activities of Mentha viridis L. essential oil (MVEO) collected in the province of Ouezzane (Northwest Morocco). Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the main constituents of MVEO were carvone (37.26%), 1,8-cineole (11.82%), limonene (5.27%), α-terpineol (4.16%), and ß-caryophyllene (4.04%). MVEO showed strong inhibitory effects on α-amylase and α-glucosidase activities, exceeding those of acarbose, but weak anti-elastase activity. The main compounds, ß-caryophyllene (IC50 = 79.91 ± 2.24 and 62.08 ± 2.78 µg/mL) and limonene (IC50 = 90.73 ± 3.47 and 68.98 ± 1, 60 µg/mL), demonstrated the strongest inhibitory effects on both digestive enzymes (α-glucosidase and α-amylase, respectively). In silico investigations, using molecular docking, also showed the inhibitory potential of these bioactive compounds against the enzymes tested. In conclusion, MVEO, due to its main components such as limonene, 1,8-cineole, ß-caryophyllene, carvone, and α-terpineol, shows promising prospects for drug discovery and natural therapeutic applications.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38909275

RESUMO

Benzene sulfonamides are an important biological substituent for several activities. In this study, hybridization of benzene sulfonamide with piperazine derivatives were investigated for their antioxidant capacity and enzyme inhibitory potencies. Six molecules were synthesized and characterized. DPPH, ABTS, FRAP, CUPRAC, chelating and phosphomolybdemum assays were applied to evaluate antioxidant capacities. Results show that compounds have high antioxidant capacity and compound 4 has the best antioxidant activity among them. Compound 4 has higher antioxidant activity than references for FRAP (IC50: 0.08 mM), CUPRAC (IC50: 0.21 mM) and phosphomolybdenum (IC50: 0.22 mM) assays. Besides this, compound 4 has moderate DPPH and ABTS antioxidant capacity. Furthermore, enzyme inhibition activities of these molecules were investigated against AChE, BChE, tyrosinase, α-amylase and α-glucosidase enzymes. It was revealed that all compounds have good enzyme inhibitory potential except for α-amylase enzyme. The best inhibitory activities were observed for AChE with compound 5 the same value (IC50: 1.003 mM), for BChE with compounds 2 and 5 the same value (IC50: 1.008 mM), for tyrosinase compound 4 (IC50: 1.19 mM), and for α-glucosidase with compound 3 (IC50: 1.000 mM). Docking studies have been conducted with these molecules, and the results correlate well with the inhibitory assays.

6.
Antioxidants (Basel) ; 13(6)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38929082

RESUMO

The present study was performed to determine the chemical constituents, cytotoxicity, antioxidant and enzyme inhibition activities of the aerial parts of Glaucium acutidentatum Hausskn. and Bornm. (family Papaveraceae). Methanolic and aqueous extracts were prepared by maceration, homogenizer-assisted extraction (HAE) and infusion. Results showed that the highest total phenolic and flavonoids contents were obtained from the methanol extracts obtained by HAE (53.22 ± 0.10 mg GAE/g) and maceration (30.28 ± 0.51 mg RE/g), respectively. The aporphine, beznyltetrahydroisoquinoline, and protopine types of Glaucium alkaloids have been tentatively identified. Among them, glaucine was identified in all extracts. Flavonoids, phenolic acids, coumarins, organic acids and fatty acids were also detected. Methanolic extract obtained using the HAE method displayed the highest anti-DPPH (41.42 ± 0.62 mg TE/g), total antioxidant (1.20 ± 0.17 mmol TE/g), Cu2+ (113.55 ± 6.44 mg TE/g), and Fe3+ (74.52 ± 4.74 mg TE/g) reducing properties. The aqueous extracts obtained by infusion and HAE methods exerted the best anti-ABTS (103.59 ± 1.49 mg TE/g) and chelating (19.81 ± 0.05 mg EDTAE/g) activities, respectively. Methanolic extract from HAE recorded the highest acetylcholinesterase (2.55 ± 0.10 mg GALAE/g) and α-amylase (0.51 ± 0.02 mmol ACAE/g) inhibition activities, while that obtained by maceration showed the best butyrylcholinesterase (3.76 ± 0.31 mg GALAE/g) inhibition activity. Both extracts revealed the best tyrosinase inhibitory activity (25.15 ± 1.00 and 26.79 ± 2.36 mg KAE/g, p ≥ 0.05). G. acutidentatum maceration-derived aqueous extract showed selective anticancer activity against cells originating from human hypopharyngeal carcinoma. In conclusion, these findings indicated that G. acutidentatum is a promising source of alkaloids and phenolic compounds for variable pharmaceutical formulations.

7.
Chem Biodivers ; : e202400738, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695450

RESUMO

In the current investigation, a comprehensive analysis was carried out on essential oils (EOs) extracted from six aromatic plant species, namely Rosmarinus officinalis, Pelargonium graveolens, Thymus vulgaris, Origanum vulgare, Laurus nobilis, and Aloysia citrodora. An exploration was conducted into the chemical composition using Gas Chromatography-Mass Spectrometry (GC/MS), antioxidant properties assessed through DPPH, ABTS, CUPRAC, FRAP, MCA, and PBD assays, ecotoxicological impacts evaluated via allelopathy and the Daphnia magna heartbeat test, as well as bio-pharmacological effects including anticancer activity and gene expression analysis. Results revealed strong antioxidant activity in all essential oils, with T. vulgaris EO (2748.00 mg TE/g) and O. vulgare EO (2609.29 mg TE/g) leading in CUPRAC assay. R. officinalis EO showed the highest α-amylase inhibition at 1.58 mmol ACAE/g, while O. vulgare EO excelled in α-glucosidase inhibition at 1.57 mmol ACAE/g. Additionally, cytotoxic effects were evaluated on human colorectal cancer (HCT116) cells. A. citrodora, O. vulgare, and R. officinalis EOs were found the most potent anticancer, as also witnessed by their higher modulatory effects on the gene expression of BAX and Bcl-2. Collectively, the present data highlight the importance to implement the knowledge and to valorize the supply chain of aromatic plants.

8.
Fitoterapia ; 176: 106016, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740345

RESUMO

Over the years, the biological activities of seaweeds could have piqued research interest due to their specific functional phytochemistry, which may not be available in terrestrial plants. Seaweeds produce these compounds to overcome and control stressful biotic and abiotic conditions. Additionally, they are potentially excellent sources of highly useful leads in the development of new drugs. Our study aims to unveil, for the first time, an overview of Halopteris scoparia, a species belonging to the Phaeophyceae class and the Stypocaulacea family, by summarizing all available literature data. In this work, we attempt to shed light on its phytochemistry, nutritional values, pharmacological activities, and industrial uses and applications. To gather information related to H. scoparia, relevant keywords were used to search internet databases including Google Scholar, PubMed, ResearchGate, Web of Science, Algae Database, WoRMS database, and DORIS database. The chemical structures were drawn using Chemdraw and verified using the PubChem database. Chemically, this species contains a wide variety of secondary metabolites, such as terpenoids and phenolic compounds. Additionally, other chemical components with nutraceutical value have been identified, such as carbohydrates, proteins, lipids, pigments, minerals and mycosporine like amino acids. Then, holding several reported pharmacological properties, including antioxidant, anti-inflammatory, cytotoxic, dermoprotective, antidepressive, antibacterial, antibiofilm, antifungal, anti-parasitic activities and acute toxicity. In addition to other their applications such as bioconversion and antifouling activities. To confirm the previous pharmacological properties, more comprehensive and systematic in vivo, preclinical, and clinical studies are needed. Furthermore, research is required to uncover the mechanisms of its active compounds and their potential therapeutic effects in treating other diseases such as atherosclerosis, neurodegenerative diseases, and viral infections.


Assuntos
Phaeophyceae , Compostos Fitoquímicos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/química , Phaeophyceae/química , Humanos , Estrutura Molecular , Animais , Alga Marinha/química
9.
Prep Biochem Biotechnol ; : 1-14, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38756105

RESUMO

For more than two millennia, Ferulago species have been revered as therapeutic herbs, maintaining their significance in present-day folk medicine practices. Therefore, the present study was conducted to investigate the phytochemical composition, inhibitory effects on metabolic enzymes, and possible therapeutic applications of F. trachycarpa, specifically focusing on its efficacy in diabetes management, anticholinergic effects, and antioxidant capabilities. The current investigation comprised an evaluation of a range of extracts acquired via conventional and modern methodologies, such as soxhlet (SOX), maceration (MAC) accelerated solvent extraction (ASE), homogenizer-assisted extraction (HAE), supercritical fluid extraction (SFE), microwave-assisted extraction (MW), and ultrasound-assisted extraction (UAE). Various techniques were employed to assess their antioxidant capacity and enzyme inhibition. Furthermore, the research utilized ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) to ascertain the principal phenolic compounds that are responsible for the antioxidant capacity observed in the various F. trachycarpa extracts. Among these, extracts from HAE, ASE, and MW revealed the most promise across all methodologies tested for their antioxidant potential. Furthermore, SFE and MAC extracts inhibited the most enzymes, including cholinesterases, tyrosinase, α -amylase, and α -glycosidase, indicating their potential as efficient natural treatments for several health-related issues.

10.
Microsc Res Tech ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725294

RESUMO

This study discusses the micro-level structural details of Cichorieae pollen sources elucidated by scanning electron microscopy (SEM) and explains their symmetry and morphometry. The in-depth knowledge from the electron ultrastructure of Asteraceae pollen has provided insights into enhanced pollen morphology, and the antimicrobial significance of species under study presents novel avenues for their natural defense mechanisms in the development of antimicrobial agents. In this research, both quantitative and qualitative features of pollen were examined. The pollen grains are prolate-spheroidal and oblate-spheroidal in shape, characterized by a maximum polar diameter of 55.6-61.0 µm and a maximum equatorial distance of 68.3-74.4 µm. SEM reveals various configurations such as echinate perforate-tectate, psilate, and echino-lophate perforate. The Cichorieae species have significant antimicrobial efficacy and are promising sources for the development of novel antimicrobial drugs with potential implications in pharmaceutical and healthcare industries. SEM analysis of Cichorieae pollens has provided remarkable insights into their unique structures, revealing diverse shapes and surface ornamentations, which can be used for accurate Asteraceae species identification. RESEARCH HIGHLIGHTS: SEM provides unique pollen surface structures and patterns of Chicory pollen grains. Chemical composition of Chicory botanical sources provides valuable information on their potential as antimicrobial agents. SEM imaging reveals specialized fenestrate grain structures of taxonomic importance.

11.
Microsc Res Tech ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38706231

RESUMO

This research on Lamiales epidermal anatomy not only provides in-depth understanding of their structural traits but also highlights the significance of uncovering the inherent antimicrobial resilience embedded within these plants. Such insights hold promise for advancing natural product-based approaches in medicine, potentially contributing to the development of novel antimicrobial agents inspired by Lamiales unique biological defense mechanisms. Scanning microscopic tools were utilized to conduct foliar epidermal anatomy of nine species that belong to seven genera and four families within the Lamiales order, Plantaginaceae, Scrophulariaceae, Verbenaceae, and Lamiaceae. This approach aimed to gather both qualitative and quantitative data, facilitating the assessment of taxonomic microanatomical significance. The shape of epidermal cells and their anticlinal walls; number of epidermal cells, stomata, and trichomes; type of stomata and trichomes; length and width of epidermal cells, trichomes, stomatal pore, guard cells, and subsidiary cells; and stomatal index were determined statistically. Most of the species examined were amphistomatous and showed extensive array of trichomes diversity. The exploration of Lamiales epidermal micromorphology and their antimicrobial potential were significant for their implications in multidisciplinary fields. The pharmacological research to utilize sustainable agricultural practices prompts avenues to strengths of Lamiales order for the development of novel antimicrobial solutions and ecological benefits. RESEARCH HIGHLIGHTS: Diverse trichome morphometry reveals a wide array of trichome structures across Lamiales species. Epidermal microscopic architecture variability of epidermal cell shapes and sizes signifies the interspecies variability. Secondary metabolite localization within microanatomical structures elucidates potential hotspots for antimicrobial compound production.

12.
Nat Prod Res ; : 1-11, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808581

RESUMO

Allochrusa gypsophiloides is one of the best-known endemic saponin bearing food plants of Central Asia. However, the plant's secondary metabolites remain unmapped. The current study aimed to chemical profile of the metabolite in the plant roots by an untargeted UHPLC-ESI-MS, together with the isolation of the major compounds followed by a 2D NMR and HR-MS for identification and evaluation of the antioxidant and enzyme inhibitory activity of the extracts. The results revealed the presence of 48 putatively annotated metabolites comprising triterpene glycosides, phenolic compounds and their derivatives, organic acid glycosides, and lignan glycosides. The chromatographic separation and purification of the extract resulted in the isolation of four compounds where two new compounds and along with two known triterpenes were reported. The ethanol/water extracts showed a maximum effect in antioxidant assays, while the ethyl acetate extract achieved the best effect in the enzyme inhibitory assays.

13.
Saudi Pharm J ; 32(6): 102090, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38766273

RESUMO

In order to gain further insight into how various extraction techniques (maceration, microwave-, and ultrasound-assisted extractions) affect the chemical profile and biological activities of leaf extracts from Paeonia tenuifolia L., Paeonia peregrina Mill., and Paeonia officinalis L., this research was performed. The targeted chemical characterization of the extracts was achieved using the Ultra-High-Performance-Liquid-Chromatography-Linear-Trap-Mass-Spectrometry OrbiTrap instrumental technique, while Fourier Transform Infrared Spectroscopy was conducted to investigate the structural properties of the examined leaf extracts. According to the results, the species P. officinalis, Bozurna locality as the origin of the plant material, and microwave-assisted extraction produced the maximum polyphenol yield, (491.9 ± 2.7 mg gallic acid equivalent (GAE)/mL). The ethanolic extracts exhibited moderate antioxidant activity as evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) and phosphomolybdenum tests. With MIC values of 0.125 mg/mL, the leaf extracts produced by ultrasound-assisted extraction and maceration (Deliblato sands and Bogovo gumno) had the best antibacterial activity against Pseudomonas aeruginosa and Salmonella Typhimurium. Ultrasound-assisted extraction has proven to produce the most effective antimicrobial agents. Inhibitory potential towards glucosidase, amylase, cholinesterases, and tyrosinase was evaluated in enzyme inhibition assays and molecular docking simulations. Results show that leaves of P. tenuifolia L. obtained by ultrasound-assisted extraction had the highest acetylcholinesterase and butyrylcholinesterase inhibitory activity. Namely, the complexity of the polyphenol structures, the extraction method, the used locality, and the different mechanisms of the reactions between bioactives from leaf extracts and other components (free radicals, microorganisms, and enzymes) are the main factors that influence the results of the antioxidant tests, as well as the antibacterial and enzyme-inhibitory activities of the extracts. Hydroxymethyl-phenyl pentosyl-hexoside and acetyl-hydroxyphenyl-hexoside were the first time identified in the leaf extract of the Paeonia species. Due to their proven biological activities and the confirmed existence of bioactive compounds, leaf extracts may find use in foodstuffs, functional foods, and pharmaceutical products.

14.
Chem Biodivers ; : e202400893, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779862

RESUMO

The present study aimed to investigate the chemical constituents of different extracts from aerial parts of A. absinthium and to evaluate their antioxidant and enzyme inhibition activity. Extracts were prepared by maceration, infusion or Soxhlet techniques. Results showed that the highest total phenolic and flavonoids contents was recorded respectively from the hexane extract prepared by maceration and ethyl acetate extract obtained by Soxhlet method. The characteristic compounds of Artemisia species artemetin, casticin, sesartemin and yangambin in addition to coumarins were identified in all extracts. Aqueous extract obtained by infusion exerted the highest radical scavenging and ions reducing properties while that prepared by maceration displayed the highest chelating power. Methanol extracts obtained by the two methods of extraction exerted the highest anti-Tyr activity while that obtained by maceration showed the best α-glucosidase inhibition activity. These findings indicated that A. absinthium is a rich source of bioactive molecules with possible therapeutic applications.

15.
Plant Physiol Biochem ; 211: 108713, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38739963

RESUMO

The spinach (S. oleracea L.) was used as a model plant to investigate As toxicity on physio-biochemical processes, exploring the potential mitigation effect of curcumin (Cur) applied exogenously at three concentrations (1, 10, and 20 µM Cur). The employment of Cur significantly mitigated As-induced stress in spinach photosynthetic performance (Fv/Fm, Fo/Fm, and Fv/Fo). Moreover, the co-incubation of Cur with As improved physiological processes mainly associated with plant water systems affected by As stress by recovering the leaf's relative water content (RWC) and osmotic potential (ψπ) nearly to the control level and increasing the transpiration rate (E; 39-59%), stomatal conductivity (gs; 86-116%), and carbon assimilation rate (A; 84-121%) compared to As stressed plants. The beneficial effect of Cur in coping with As-induced stress was also assessed at the plant's oxidative level by reducing oxidative stress biomarkers (H2O2 and MDA) and increasing non-enzymatic antioxidant capacity. Untargeted metabolomics analysis was adopted to investigate the main processes affected by As and Cur application. A multifactorial ANOVA discrimination model (AMOPLS-DA) and canonical correlation analysis (rCCA) were employed to identify relevant metabolic changes and biomarkers associated with Cur and As treatments. The results highlighted that Cur significantly determined the accumulation of glucosinolates, phenolic compounds, and an increase in glutathione redox cycle activities, suggesting an overall elicitation of plant secondary metabolisms. Specifically, the correlation analysis reported a strong and positive correlation between (+)-dihydrokaempferol, L-phenylalanine (precursor of phenolic compounds), and serotonin-related metabolites with antioxidant activities (ABTS and DPPH), suggesting the involvement of Cur application in promoting a cross-talk between ROS signaling and phytohormones, especially melatonin and serotonin, working coordinately to alleviate As-induced oxidative stress. The modulation of plant metabolism was also observed at the level of amino acids, fatty acids, and secondary metabolites synthesis, including N-containing compounds, terpenes, and phenylpropanoids to cooperate with As-induced stress response.


Assuntos
Curcumina , Metabolômica , Fotossíntese , Spinacia oleracea , Curcumina/farmacologia , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/metabolismo , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Estresse Fisiológico/efeitos dos fármacos
16.
Chem Biodivers ; 21(6): e202400402, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573028

RESUMO

Gastrodin, a bioactive compound derived from the rhizome of the orchid Gastrodia elata, exhibits a diverse range of biological activities. With documented neuroprotective, anti-inflammatory, antioxidant, anti-apoptotic, and anti-tumor effects, gastrodin stands out as a multifaceted therapeutic agent. Notably, it has demonstrated efficacy in protecting against neuronal damage and enhancing cognitive function in animal models of Alzheimer's disease, Parkinson's disease, and cerebral ischemia. Additionally, gastrodin showcases immunomodulatory effects by mitigating inflammation and suppressing the expression of inflammatory cytokines. Its cytotoxic activity involves the inhibition of angiogenesis, suppression of tumor growth, and induction of apoptosis. This comprehensive review seeks to elucidate the myriad potential effects of Gastrodin, delving into the intricate molecular mechanisms underpinning its pharmacological properties. The findings underscore the therapeutic potential of gastrodin in addressing various conditions linked to neuroinflammation and cancer.


Assuntos
Álcoois Benzílicos , Glucosídeos , Fármacos Neuroprotetores , Álcoois Benzílicos/farmacologia , Álcoois Benzílicos/química , Glucosídeos/farmacologia , Glucosídeos/química , Humanos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Gastrodia/química , Antioxidantes/farmacologia , Antioxidantes/química , Apoptose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo
17.
Biomed Chromatogr ; 38(7): e5869, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38599336

RESUMO

The increasing demand for honey purification and authentication necessitates the global utilization of advanced processing tools. Common honey processing techniques, such as chromatography, are commonly used to assess the quality and quantity of valuable honey. In this study, 15 honey samples were authenticated using HPLC and GC-MS chromatographic methods to analyze their pollen spectrum. Various monofloral honey samples were collected, including Acacia, Hypoestes, Lavandula, Tamarix, Trifolium, and Ziziphus species, based on accurate identification by apiarists in 2023 from the Kingdom of Saudi Arabia. Honey analysis revealed the extraction of pollen from 20 different honeybee floral species. Pollen identified from honey samples using advanced chromatographic tools revealed dominant vegetation resources: Ziziphus species (23%), Acacia species (25%), Tamarix species (34%), Lavandula species (26%), Hypoestes species (34%), and Trifolium species (31%). This study uses HPLC to extract phenolic compounds, revealing dominant protocatechuic acid (4.71 mg g-1), and GC-MS to analyze organic compounds in honey pollen. Specifically, 2-dodecanone was detected with a retention time of 7.34 min. The utilization of chromatographic tools in assessing honey samples for pollen identification provides a reliable and efficient method for determining their botanical origins, thereby contributing to the quality control and authentication of honey products.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Mel , Pólen , Pólen/química , Mel/análise , Cromatografia Líquida de Alta Pressão/métodos , Arábia Saudita , Cromatografia Gasosa-Espectrometria de Massas/métodos , Abelhas , Animais , Fenóis/análise
18.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675478

RESUMO

Without being aware of their chemical composition, many cultures have used herbaceous peony roots for medicinal purposes. Modern phytopreparations intended for use in human therapy require specific knowledge about the chemistry of peony roots and their biological activities. In this study, ethanol-water extracts were prepared by maceration and microwave- and ultrasound-assisted extractions (MAE and UAE, respectively) in order to obtain bioactive molecules from the roots of Paeonia tenuifolia L., Paeonia peregrina Mill., and Paeonia officinalis L. wild growing in Serbia. Chemical characterization; polyphenol and flavonoid content; antioxidant, multianti-enzymatic, and antibacterial activities of extracts; and in vitro gastrointestinal digestion (GID) of hot water extracts were performed. The strongest anti-cholinesterase activity was observed in PT extracts. The highest anti-ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical potential was observed in PP extracts, whereas against DPPH (2,2-diphenyl-1-picrylhydrazyl radicals), the best results were achieved with PO extracts. Regarding antibacterial activity, extracts were strongly potent against Bacillus cereus. A molecular docking simulation was conducted to gather insights into the binding affinity and interactions of polyphenols and other Paeonia-specific molecules in the active sites of tested enzymes. In vitro GID of Paeonia teas showed a different recovery and behavior of the individual bioactives, with an increased recovery of methyl gallate and digallate and a decreased recovery of paeoniflorin and its derivatives. PT (Gulenovci) and PP (Pirot) extracts obtained by UAE and M were more efficient in the majority of the bioactivity assays. This study represents an initial step toward the possible application of Paeonia root extracts in pharmacy, medicine, and food technologies.

19.
BMC Complement Med Ther ; 24(1): 167, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649994

RESUMO

Tanacetum falconeri is a significant flowering plant that possesses cytotoxic, insecticidal, antibacterial, and phytotoxic properties. Its chemodiversity and bioactivities, however, have not been thoroughly investigated. In this work, several extracts from various parts of T. falconeri were assessed for their chemical profile, antioxidant activity, and potential for enzyme inhibition. The total phenolic contents of T. falconeri varied from 40.28 ± 0.47 mg GAE/g to 11.92 ± 0.22 mg GAE/g in various extracts, while flavonoid contents were found highest in TFFM (36.79 ± 0.36 mg QE/g extract) and lowest (11.08 ± 0.22 mg QE/g extract) in TFSC (chloroform extract of stem) in similar pattern as found in total phenolic contents. Highest DPPH inhibition was observed for TFFC (49.58 ± 0.11 mg TE/g extract) and TFSM (46.33 ± 0.10 mg TE/g extract), whereas, TFSM was also potentially active against (98.95 ± 0.57 mg TE/g) ABTS radical. In addition, TFSM was also most active in metal reducing assays: CUPRAC (151.76 ± 1.59 mg TE/g extract) and FRAP (101.30 ± 0.32 mg TE/g extract). In phosphomolybdenum assay, the highest activity was found for TFFE (1.71 ± 0.03 mg TE/g extract), TFSM (1.64 ± 0.035 mg TE/g extract), TFSH (1.60 ± 0.033 mg TE/g extract) and TFFH (1.58 ± 0.08 mg TE/g extract), while highest metal chelating activity was recorded for TFSH (25.93 ± 0.79 mg EDTAE/g extract), TFSE (22.90 ± 1.12 mg EDTAE/g extract) and TFSC (19.31 ± 0.50 mg EDTAE/g extract). In biological screening, all extracts had stronger inhibitory capacity against AChE while in case of BChE the chloroform extract of flower (TFFC) and stem (TFSC) showed the highest activities with inhibitory values of 2.57 ± 0.24 and 2.10 ± 0.18 respectively. Similarly, TFFC and TFSC had stronger inhibitory capacity (1.09 ± 0.015 and 1.08 ± 0.002 mmol ACAE/g extract) against α-Amylase and (0.50 ± 0.02 and 0.55 ± 0.02 mmol ACAE/g extract) α-Glucosidase. UHPLC-MS study of methanolic extract revealed the presence of 133 components including sterols, triterpenes, flavonoids, alkaloids, and coumarins. The total phenolic contents were substantially linked with all antioxidant assays in multivariate analysis. These findings were validated by docking investigations, which revealed that the selected compounds exhibited high binding free energy with the enzymes tested. Finally, it was found that T. falconeri is a viable industrial crop with potential use in the production of functional goods and nutraceuticals.


Assuntos
Antioxidantes , Extratos Vegetais , Tanacetum , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Tanacetum/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Flavonoides/farmacologia , Flavonoides/química , Metabolismo Secundário , Simulação por Computador , Fenóis/farmacologia , Fenóis/química
20.
Arch Pharm (Weinheim) ; 357(7): e2400091, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38570869

RESUMO

Lantana camara is widely known as a garden plant, but its use for various medicinal purposes is widespread in traditional medicine. In the frame of this study, L. camara was subjected to several different extraction techniques, including supercritical carbon dioxide extraction, accelerated solvent extraction (ASE), homogenizer-assisted extraction, microwave-assisted extraction, ultrasound-assisted extraction, maceration, and Soxhlet extraction. The investigation encompasses the analysis of the chemical composition alongside assessments of biological activities, such as antioxidant and enzyme-inhibition potential and cytotoxicity of the obtained extracts. The obtained results showed that the extract obtained by accelerated-solvent extraction was the richest in the content of total phenols and of individual compounds. Of the 17 components identified in total, hispidulin was detected in the highest concentration (5.43-475.97 mg/kg). In the antioxidant assays, the extracts obtained by accelerated-solvent and microwave extraction possessed the highest level of antioxidant and antiradical protection. All obtained extracts showed enzyme-inhibitory action on amylase, glucosidase, tyrosinase, and cholinesterase, showing a high potential for application against diseases induced by excessive activity of these enzymes. Cytotoxic analysis was performed on normal and tumor cells, whereby the obtained IC50 values were in the range of 7.685-79.26 µg/mL, showing the high cytotoxicity of the obtained extracts. Using Z score analysis, ASE resulted in an optimal combination of tested quality characteristics of the L. camara extracts.


Assuntos
Antioxidantes , Lantana , Extratos Vegetais , Espectrometria de Massas em Tandem , Lantana/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Humanos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Solventes/química , Micro-Ondas , Relação Dose-Resposta a Droga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...