Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Neuropathol Exp Neurol ; 83(7): 615-625, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38804899

RESUMO

Breviscapine (Bre), an extract from Erigeron breviscapus, has been widely used to treat cerebral ischemia but the mechanisms of its neuroprotective effects need to be clarified. The present study investigated whether Bre could alleviate excessive autophagy induced by cerebral ischemia in the rat middle cerebral artery occlusion (MCAO) ischemia model via activating the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5)/B-cell lymphoma 2 (BCL2) pathway. Rats were randomly divided into 5 groups, i.e. Sham group, MCAO+saline group, MCAO+Bre group, MCAO+DMSO (Dimethyl sulfoxide) group, and MCAO+Bre+AG490 (Tyrphostin AG490, the inhibitor of STAT5) group. The model was established and neuroprotection was evaluated by determining infarct volumes and conducting neurological behavioral tests. Autophagy levels in the infarct penumbra were detected using transmission electron microscopy and Western blotting. The expression of proteins in the JAK2/STAT5/BCL2 pathway was tested by Western blotting. Compared to the MCAO+saline group, the infarct volumes in the MCAO+Bre group were significantly reduced and neurological behavior improved. Breviscapine administration also significantly increased p-JAK2, p-STAT5, and BCL2 expression but decreased autolysosome numbers; it also downregulated Beclin-1 expression and the LC3II/LCI ratio. The JAK2 inhibitor AG490 reversed these effects. These findings indicate that breviscapine can improve neural recovery following ischemia through alleviating excessive autophagy and activation of the JAK2/STAT5/BCL2 axis.


Assuntos
Autofagia , Modelos Animais de Doenças , Flavonoides , Janus Quinase 2 , Proteínas Proto-Oncogênicas c-bcl-2 , Ratos Sprague-Dawley , Fator de Transcrição STAT5 , Transdução de Sinais , Animais , Janus Quinase 2/metabolismo , Flavonoides/farmacologia , Masculino , Ratos , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Fator de Transcrição STAT5/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ataque Isquêmico Transitório/tratamento farmacológico , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/metabolismo , Fármacos Neuroprotetores/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Tirfostinas
2.
BMC Surg ; 24(1): 150, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745222

RESUMO

PURPOSE: To investigate whether the mixed approach is a safe and advantageous way to operate laparoscopic right hemicolectomy. METHODS: A retrospective study was performed on 316 patients who underwent laparoscopic right hemicolectomy in our center. They were assigned to the middle approach group (n = 158) and the mixed approach group (n = 158) according to the surgical approaches. The baseline data like gender、age and body mass index as well as the intraoperative and postoperative conditions including operation time, blood loss, postoperative hospital stay and complications were analyzed. RESULTS: There were no significant differences in age, sex, BMI, ASA grade and tumor characteristics between the two groups. Compared with the middle approach group, the mixed approach group was significantly lower in terms of operation time (217.61 min vs 154.31 min, p < 0.001), intraoperative blood loss (73.8 ml vs 37.97 ml, p < 0.001) and postoperative drainage volume. There was no significant difference in the postoperative complications like postoperative anastomotic leakage, postoperative infection and postoperative intestinal obstruction. CONCLUSIONS: Compared with the middle approach, the mixed approach is a safe and advantageous way that can significantly shorten the operation time, reduce intraoperative bleeding and postoperative drainage volume, and does not prolong the length of hospital stay or increase the morbidity postoperative complications.


Assuntos
Colectomia , Neoplasias do Colo , Laparoscopia , Duração da Cirurgia , Complicações Pós-Operatórias , Humanos , Estudos Retrospectivos , Colectomia/métodos , Masculino , Feminino , Laparoscopia/métodos , Neoplasias do Colo/cirurgia , Pessoa de Meia-Idade , Idoso , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Tempo de Internação/estatística & dados numéricos , Resultado do Tratamento , Perda Sanguínea Cirúrgica/estatística & dados numéricos , Adulto
4.
Structure ; 32(4): 440-452.e4, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38340732

RESUMO

Nonribosomal peptide synthetases (NRPSs) are large multidomain enzymes for the synthesis of a variety of bioactive peptides in a modular and pipelined fashion. Here, we investigated how the condensation (C) domain and the adenylation (A) domain cooperate with each other for the efficient catalytic activity in microcystin NRPS modules. We solved two crystal structures of the microcystin NRPS modules, representing two different conformations in the NRPS catalytic cycle. Our data reveal that the dynamic interaction between the C and the A domains in these modules is mediated by the conserved "RXGR" motif, and this interaction is important for the adenylation activity. Furthermore, the "RXGR" motif-mediated dynamic interaction and its functional regulation are prevalent in different NRPSs modules possessing both the A and the C domains. This study provides new insights into the catalytic mechanism of NRPSs and their engineering strategy for synthetic peptides with different structures and properties.


Assuntos
Microcistinas , Peptídeo Sintases , Peptídeo Sintases/química , Conformação Molecular , Peptídeos
5.
PLoS One ; 19(1): e0296953, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38261558

RESUMO

Irrigation district plays an important role in China's agricultural production. In recent years, China conducted many water-saving renovation construction projects of irrigation districts. However, the current implementation effect of irrigation district water-saving renovation has not been well-characterized. Comprehensive and systematic evaluation of the implementation effect of water-saving renovation in irrigation districts can provide scientific basis for further construction and management of irrigation districts. This study screened preliminary index system in four dimensions: preliminary work, completion of construction tasks, completion of planned investment, management and reform. Based on the statistical results of the questionnaire surveys and subsequently analyzed, fourteen key evaluation indicators were finally identified. Percentile system and expert evaluation method were then used to determine the assigned score of every indicator. Based on the evaluation criteria, the evaluation method of the implementation effect was formulated. Ten key medium-sized irrigation districts in southeastern China were taken as a research example in this study, with the implementation effect of water-saving renovation of 10 irrigation districts being comprehensively evaluated. The results show that these irrigation districts have a relatively high implementation effect of water-saving renovation. The data results from the scores of four dimensions and fourteen indicators show that the index system is reasonable and practicable, and the evaluation results are basically in line with actual situation. These findings have a good practical reference value for making decisions about how to instruct the modernization development of water-saving renovation of irrigation districts in China.


Assuntos
Agricultura , Água , China , Tomada de Decisões , Investimentos em Saúde
6.
Nucleic Acids Res ; 52(1): 404-419, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38000383

RESUMO

The bacterial ribonuclease RNase E plays a key role in RNA metabolism. Yet, with a large substrate spectrum and poor substrate specificity, its activity must be well controlled under different conditions. Only a few regulators of RNase E are known, limiting our understanding on posttranscriptional regulatory mechanisms in bacteria. Here we show that, RebA, a protein universally present in cyanobacteria, interacts with RNase E in the cyanobacterium Anabaena PCC 7120. Distinct from those known regulators of RNase E, RebA interacts with the catalytic region of RNase E, and suppresses the cleavage activities of RNase E for all tested substrates. Consistent with the inhibitory function of RebA on RNase E, depletion of RNase E and overproduction of RebA caused formation of elongated cells, whereas the absence of RebA and overproduction of RNase E resulted in a shorter-cell phenotype. We further showed that the morphological changes caused by altered levels of RNase E or RebA are dependent on their physical interaction. The action of RebA represents a new mechanism, potentially conserved in cyanobacteria, for RNase E regulation. Our findings provide insights into the regulation and the function of RNase E, and demonstrate the importance of balanced RNA metabolism in bacteria.


Assuntos
Anabaena , Endorribonucleases , Anabaena/genética , Cianobactérias/genética , Cianobactérias/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
7.
Food Chem ; 438: 137989, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37992607

RESUMO

The pecan (Carya illinoinensis) is an important tree nut worldwide. Browning of the testa during storage considerably reduces its quality. However, the pigments that cause browning and their accumulation patterns are poorly understood. We analyzed the color changes in the testa during the five developmental stages of the kernel after storage at room temperature to compare differences in their color and identify the pigments. Samples exhibiting different colors along with their corresponding -80 °C storage samples were selected for metabolomic analysis. A total of 591 phenolic compounds were detected, 52 phenolics showed regulatory effects on testa discoloration, and 59 metabolites were identified as possible precursors of the pigments. This study revealed the most thorough phenolic composition of pecan to date. Further, the findings provide new insights into the mechanisms of testa browning, deepens our understanding of the bioactive value of pecans, and contributes to the breeding of less browning-susceptible varieties.


Assuntos
Carya , Carya/metabolismo , Melhoramento Vegetal , Fenóis/metabolismo , Nozes
8.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6021-6029, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114208

RESUMO

Dao-di herbs are the treasure of Chinese materia medica and one of the characteristic research objects of traditional Chinese medicine(TCM). Probing into the microevolution of Dao-di herbs can help to reveal their biological essence and quality formation mechanisms. The progress in molecular biology and omics provides the possibility to elucidate the phylogenetic and quality forming characteristics of Dao-di herbs at the molecular level. In particular, genomics serves as a powerful tool to decipher the genetic origins of Dao-di herbs, and molecular markers have been widely used in the research on the genetic diversity and population structure of Dao-di herbs. Focusing on the excellent traits and quality of Dao-di herbs, this paper reviews the studies about the microevolution process of quality formation mechanisms of Dao-di herbs with the application of molecular markers and omics, aiming to underpin the protection and utilization of TCM resources.


Assuntos
Medicamentos de Ervas Chinesas , Plantas Medicinais , Filogenia , Plantas Medicinais/química , Medicina Tradicional Chinesa , Fenótipo
9.
Mol Microbiol ; 120(5): 740-753, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37804047

RESUMO

The filamentous cyanobacterium Anabaena sp. PCC 7120 is able to form heterocysts for nitrogen fixation. Heterocyst differentiation is initiated by combined-nitrogen deprivation, followed by the commitment step during which the developmental process becomes irreversible. Mature heterocysts are terminally differentiated cells unable to divide, and cell division is required for heterocyst differentiation. Previously, we have shown that the HetF protease regulates cell division and heterocyst differentiation by cleaving PatU3, which is an inhibitor for both events. When hetF is required during the developmental program remains unknown. Here, by controlling the timing of hetF expression during heterocyst differentiation, we provide evidence that hetF is required just before the beginning of heterocyst morphogenesis. Consistent with this finding, transcriptome data show that most of the genes known to be involved in the early step (such as hetR and ntcA) or the commitment step (such as hetP and hetZ) of heterocyst development could be expressed in the ΔhetF mutant. In contrast, most of the genes involved in heterocyst morphogenesis and nitrogen fixation remain repressed in the mutant. These results indicated that in the absence of hetF, heterocyst differentiation is able to be initiated and proceeds to the stage just before heterocyst envelope formation.


Assuntos
Anabaena , Cianobactérias , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Cianobactérias/metabolismo , Diferenciação Celular
10.
Front Plant Sci ; 14: 1237800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841605

RESUMO

Introduction: Atractylodes lancea is widely distributed in East Asia, ranging from Amur to south-central China. The rhizome of A. lancea is commonly used in traditional Chinese medicine, however, the quality of products varies across different regions with different geochemical characteristics. Method: This study aimed to identify the chemotypes of A. lancea from different areas and screen for chemical markers by quantifying volatile organic compounds (VOCs) using a targeted metabolomics approach based on GC-MS/MS. Results: The A. lancea distributed in Hubei, Anhui, Shaanxi, and a region west of Henan province was classified as the Hubei Chemotype (HBA). HBA is characterized by high content of ß-eudesmol and hinesol with lower levels of atractylodin and atractylon. In contrast, the Maoshan Chemotype (MA) from Jiangsu, Shandong, Shanxi, Hebei, Inner Mongolia, and other northern regions, exhibited high levels of atractylodin and atractylon. A total of 15 categories of VOCs metabolites were detected and identified, revealing significant differences in the profiles of terpenoid, heterocyclic compound, ester, and ketone among different areas. Multivariate statistics indicated that 6 compounds and 455 metabolites could serve as candidate markers for differentiating A. lancea obtained from the southern, northern, and Maoshan areas. Discussion: This comprehensive analysis provides a chemical fingerprint of selected A. lancea. Our results highlight the potential of metabolite profiling combined with chemometrics for authenticating the geographical origin of A. lancea.

11.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4942-4949, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802835

RESUMO

Root rot is a microbial disease that is difficult to control and can result in serious losses in the planting of most Chinese medicinal materials. As high as 87.6% of roots or rhizomes of Chinese medicinal materials are susceptible to root rot, which seriously affects the cultivation development of Chinese medicinal materials. Trichoderma fungi, possessing biological control functions, can induce plants to improve their resistance to microbial diseases, promote plant growth, and effectively reduce the losses caused by various microbial diseases on cultivation. At present, Trichoderma is rarely used in the cultivation of Chinese medicinal materials, so it has great application potential for the prevention and control of root rot diseases in farmed Chinese medicinal materials. Based on the above situation, after comparison and discussion, it is believed that compared with chemical control and physical control, biological control of root rot diseases of Chinese medicinal materials is more efficient and meets the development needs of Chinese medicinal materials ecological planting in China. This paper reviewed the progress in the research and application of Trichoderma in the control of root rot diseases in the root and rhizome of farmed Chinese medicinal materials in the past 10 years and found that most of the current research on the biological control of root rot diseases in Chinese medicinal materials was mostly limited to the verification of the inhibitory effect of Trichoderma strains on the growth of the pathogenic microbes. Studies on the induction effect of Trichoderma on Chinese medicinal materials are not in depth. Studies on the responding mechanisms of most Chinese medicinal materials to Trichoderma are highly absent. Moreover, there are few reports on field experiments, which indicates that there is a long way to go before Trichoderma is widely applied in the farming practice of Chinese medicinal materials. To sum up, this paper aimed to link the present and the future and advocated further relevant research and more experiments on the application of Trichoderma in the farming of Chinese medicinal materials.


Assuntos
Trichoderma , Agricultura , Fazendas , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Rizoma
12.
Appl Microbiol Biotechnol ; 107(21): 6655-6670, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37688598

RESUMO

Atractylodes lancea is an important source of traditional Chinese medicines. Sesquiterpenoids are the key active compounds in A. lancea, and their presence determines the quality of the material. Hairy hoot (HR) culture is a potential method to produce medicinally active compounds industrially; however, the induction and metabolic profiling of A. lancea HR have not been reported. We found that optimal induction of A. lancea HR was achieved by Agrobacterium rhizogenes strain C58C1 using the young leaves of tissue culture seedlings in the rooting stage as explants. Ultra-performance liquid chromatography-tandem mass spectrometric analyses of the chemical compositions of HR and normal root (NR) led to the annotation of 1046 metabolites. Over 200 differentially accumulated metabolites were identified, with 41 found to be up-regulated in HR relative to NR and 179 down-regulated in HR. Specifically, atractylodin levels were higher in HR, while the levels of ß-eudesmol and hinesol were higher in NR. Metabolic pathway analyses showed a significant difference in metabolites of the shikimate acid pathway between HR and NR. Five A. lancea compounds are potential biomarkers for evaluation of HR and NR quality. This study provides an important reference for the application of HR for the production of medicinally active compounds. KEY POINTS: • We established an efficient protocol for the induction of HR in A. lancea • HR was found to have a significantly higher amount of atractylodin than did NRs • Metabolic pathway analyses showed a significant difference in metabolites of the shikimate acid pathway between HR and NR.

13.
Front Neurosci ; 17: 1177283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534033

RESUMO

Transcranial magnetic stimulation (TMS) is a non-invasive brain neurostimulation technique that can be used as one of the adjunctive treatment techniques for neurological recovery after stroke. Animal studies have shown that TMS treatment of rats with middle cerebral artery occlusion (MCAO) model reduced cerebral infarct volume and improved neurological dysfunction in model rats. In addition, clinical case reports have also shown that TMS treatment has positive neuroprotective effects in stroke patients, improving a variety of post-stroke neurological deficits such as motor function, swallowing, cognitive function, speech function, central post-stroke pain, spasticity, and other post-stroke sequelae. However, even though numerous studies have shown a neuroprotective effect of TMS in stroke patients, its possible neuroprotective mechanism is not clear. Therefore, in this review, we describe the potential mechanisms of TMS to improve neurological function in terms of neurogenesis, angiogenesis, anti-inflammation, antioxidant, and anti-apoptosis, and provide insight into the current clinical application of TMS in multiple neurological dysfunctions in stroke. Finally, some of the current challenges faced by TMS are summarized and some suggestions for its future research directions are made.

14.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2896-2903, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37381971

RESUMO

A rich diversity of wild medicinal plant resources is distributed in China, but the breeding of new plant varieties of Chinese medicinal plants started late and the breeding level is relatively weak. Chinese medicinal plant resources are the foundation for new varieties breeding, and the plant variety rights(PVP) are of great significance for the protection and development of germplasm resources. However, most Chinese medicinal plants do not have a distinctness, uniformity, and stability(DUS) testing guideline. The Ministry of Agriculture and Rural Affairs has put 191 plant species(genera) on protection lists, of which only 30 are medicinal species(genera). At the same time, only 29 of 293 species(genera) plants in the Protection List of New Plant Varieties of the People's Republic of China(Forest and Grass) belong to Chinese medicinal plants. The number of PVP applications and authorization of Chinese medicinal plants is rare, and the composition of variety is unreasonable. Up to now, 29 species(genera) of DUS test guidelines for Chinese medicinal plants have been developed. Some basic problems in the breeding of new varieties of Chinese medicinal plants have appeared, such as the small number of new varieties and insufficient utilization of Chinese medicinal plant resources. This paper reviewed the current situation of breeding of new varieties of Chinese medicinal plants and the research progress of DUS test guidelines in China and discussed the application of biotechnology in the field of Chinese medicinal plant breeding and the existing problems in DUS testing. This paper guides the further application of DUS to protect and utilize the germplasm resources of Chinese medicinal plants.


Assuntos
Plantas Medicinais , Agricultura , Biotecnologia , Melhoramento Vegetal , Plantas Medicinais/genética
15.
Commun Biol ; 6(1): 643, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322092

RESUMO

Transcriptional and translational regulations are important mechanisms for cell adaptation to environmental conditions. In addition to house-keeping tRNAs, the genome of the filamentous cyanobacterium Anabaena sp. strain PCC 7120 (Anabaena) has a long tRNA operon (trn operon) consisting of 26 genes present on a megaplasmid. The trn operon is repressed under standard culture conditions, but is activated under translational stress in the presence of antibiotics targeting translation. Using the toxic amino acid analog ß-N-methylamino-L-alanine (BMAA) as a tool, we isolated and characterized several BMAA-resistance mutants from Anabaena, and identified one gene of unknown function, all0854, named as trcR, encoding a transcription factor belonging to the ribbon-helix-helix (RHH) family. We provide evidence that TrcR represses the expression of the trn operon and is thus the missing link between the trn operon and translational stress response. TrcR represses the expression of several other genes involved in translational control, and is required for maintaining translational fidelity. TrcR, as well as its binding sites, are highly conserved in cyanobacteria, and its functions represent an important mechanism for the coupling of the transcriptional and translational regulations in cyanobacteria.


Assuntos
Anabaena , Cianobactérias , Proteínas de Bactérias/metabolismo , Anabaena/genética , Anabaena/metabolismo , Cianobactérias/genética , Fatores de Transcrição/metabolismo , Óperon , RNA de Transferência/metabolismo
16.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1186-1193, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-37005802

RESUMO

Chinese medicinal resources are the cornerstone of the sustainable development of traditional Chinese medicine industry. However, due to the fecundity of species, over-exploitation, and limitations of artificial cultivation, some medicinal plants are depleted and even endangered. Tissue culture, a breakthrough technology in the breeding of traditional Chinese medicinal materials, is not limited by time and space, and can allow the production on an annual basis, which plays an important role in the protection of Chinese medicinal resources. The present study reviewed the applications of tissue culture of medicinal plants in the field of Chinese medicinal resources, including rapid propagation of medicinal plant seedlings, breeding of novel high-yield and high-quality cultivars, construction of a genetic transformation system, and production of secondary metabolites. Meanwhile, the current challenges and suggestions for the future development of this field were also proposed.


Assuntos
Plantas Medicinais , Desenvolvimento Sustentável , Plantas Medicinais/genética , Melhoramento Vegetal , Medicina Tradicional Chinesa , Tecnologia
17.
Proc Natl Acad Sci U S A ; 120(13): e2221874120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36947515

RESUMO

Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule. It is also a critical player in the regulation of cell size and cell behaviors such as cell aggregation and phototaxis in cyanobacteria, which constitute an important group of prokaryotes for their roles in the ecology and evolution of the Earth. However, c-di-GMP receptors have never been revealed in cyanobacteria. Here, we report the identification of a c-di-GMP receptor, CdgR, from the filamentous cyanobacterium Anabaena PCC 7120. Crystal structural analysis and genetic studies demonstrate that CdgR binds c-di-GMP at the dimer interface and this binding is required for the control of cell size in a c-di-GMP-dependent manner. Different functions of CdgR, in ligand binding and signal transmission, could be separated genetically, allowing us to dissect its molecular signaling functions. The presence of the apo-form of CdgR triggers cell size reduction, consistent with the similar effects observed with a decrease of c-di-GMP levels in cells. Furthermore, we found that CdgR exerts its function by interacting with a global transcription factor DevH, and this interaction was inhibited by c-di-GMP. The lethal effect triggered by conditional depletion of DevH or by the production of several point-mutant proteins of CdgR in cells indicates that this signaling pathway plays critical functions in Anabaena. Our studies revealed a mechanism of c-di-GMP signaling in the control of cell size, an important and complex trait for bacteria. CdgR is highly conserved in cyanobacteria, which will greatly expand our understanding of the roles of c-di-GMP signaling in these organisms.


Assuntos
Cianobactérias , Transdução de Sinais , Cianobactérias/metabolismo , GMP Cíclico/metabolismo , Regulação da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
18.
J Agric Food Chem ; 71(14): 5812-5822, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36995220

RESUMO

Pecan, Carya illinoinensis (Wangenh.) K. Koch, is an important dried fruit and woody oil tree species grown worldwide. With continuous expansion of pecan cultivation, the frequency and scope of diseases, especially black spot disease, are increasing, damaging trees and reducing yields. In this study, the key factors in resistance to black spot disease (Colletotrichum fioriniae) were investigated between the high-resistance pecan variety "Kanza" and the low-resistance variety "Mahan". Leaf anatomy and antioxidase activities confirmed much stronger resistance to black spot disease in "Kanza" than in "Mahan". Transcriptome analysis indicated that the increased expression of genes associated with defense response, oxidation-reduction, and catalytic activity was involved in disease resistance. A connection network identified a highly expressed hub gene CiFSD2 (CIL1242S0042), which might participate in redox reactions to affect disease resistance. Overexpression of CiFSD2 in tobacco inhibited enlargement of necrotic spots and increased disease resistance. Overall, the expression of differentially expressed genes differed in pecan varieties with different levels of resistance to C. fioriniae infection. In addition, the hub genes associated with black spot resistance were identified and the functions clarified. The in-depth understanding of resistance to black spot disease provides new insights for early screening of resistant varieties and molecular-assisted breeding in pecan.


Assuntos
Carya , Carya/genética , Resistência à Doença , Frutas , Perfilação da Expressão Gênica
19.
PNAS Nexus ; 2(2): pgac307, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36743469

RESUMO

Bacterial cells mostly divide symmetrically. In the filamentous, multicellular cyanobacterium Anabaena, cell-division planes are aligned vertically relative to the long axis of every single cell. This observation suggests that both the placement and the angle of the division planes are controlled in every single cell so that the filament can grow in one single dimension along the long axis. In this study, we showed that inactivation of patU3 encoding a cell-division inhibitor led cells to divide asymmetrically in two dimensions leading to twisted filaments, indicating that PatU3 controls not only the position but also the angle of the division planes. Deletion of the conserved minC and minD genes affected cell division symmetry, but not the angle of the division planes. Remarkably, when both patU3 and minCD were inactivated, cells could divide asymmetrically over 360° angles in three dimensions across different cellular sections, producing not only cells with irregular sizes, but also branching filaments. This study demonstrated the existence of a system operating in a three-dimensional manner for the control of cell division in Anabaena. Such a regulation may have been evolved to accommodate multicellular behaviors, a hallmark in evolution.

20.
Microbiol Spectr ; 11(1): e0422822, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36625639

RESUMO

Each bacterial species possesses a specific cell size and morphology, which constitute important and recognizable physical traits. How bacteria maintain their particular cell size and morphology remains an essential question in microbiology. Cyanobacteria are oxygen-evolving photosynthetic prokaryotes. Although monophyletic, these organisms are highly diverse in their cell morphology and cell size. How these physical traits of cyanobacteria are controlled is poorly understood. Here, we report the identification of a two-component signaling system, composed of a histidine kinase CdgK and a response regulator CdgS, involved in cell size regulation in the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Inactivation of cdgK or cdgS led to reduction of cell length and width with little effect on cell growth capacity. CdgS has a GGDEF domain responsible for the synthesis of the second messenger c-di-GMP. Based on genetic and biochemical studies, we proposed a signaling pathway initiated by CdgK, leading to the phosphorylation of CdgS, and thereby an enhanced enzymatic activity for c-di-GMP synthesis of the latter. The GGDEF domain of CdgS was essential in cell size control, and the reduction of cell size observed in various mutants could be rescued by the expression of a c-di-GMP synthetase from E. coli. These results provided evidence that a minimal threshold of c-di-GMP level was required for maintaining cell size in Anabaena. IMPORTANCE Cyanobacteria are considered the first organisms to produce oxygen on Earth, and their activities shaped the evolution of our ecosystems. Cell size is an important trait fixed early in evolution, with the diversification of micro- and macrocyanobacterial species during the Great Oxidation Event. However, the genetic basis underlying cell size control in cyanobacteria was not understood. Our studies demonstrated that the CdgK-CdgS signaling pathway participates in the control of cell size, and their absence did not affect cell growth. CdgK has multiple domains susceptible to signal input, which are necessary for cell size regulation. This observation suggests that cell size in Anabaena could respond to environmental signals. These studies paved the way for genetic dissection of cell size regulation in cyanobacteria.


Assuntos
Anabaena , Cianobactérias , Escherichia coli/metabolismo , Ecossistema , Transdução de Sinais , Anabaena/genética , Anabaena/metabolismo , Tamanho Celular , Oxigênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...