Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Talanta ; 276: 126253, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759359

RESUMO

A novel zeolitic imidazolate framework-encapsulated zinc porphyrin (ZnTCPP@ZIF-90) photoresponsive nanozyme is proposed for the colorimetric/fluorescent dual-mode visual sensing of glyphosate (Gly). ZnTCPP@ZIF-90 exhibits photoresponsive oxidase-like activity and fluorescence quenching behavior. Meanwhile, the outer ZIF-90 layer can be selectively destroyed by Gly, causing the release of free ZnTCPP, resulting in the enhanced enzyme-like activity as well as fluorescence emission. The constructed ZnTCPP@ZIF-90 was successfully used for the colorimetric/fluorescent dual-mode detection of Gly. Additionally, the colorimetric and fluorescent images information captured by the smartphone were converted to color intensity (HSV/RGB values), with limits of detection of 0.27 µg/mL and 0.19 µg/mL, respectively. The proposed dual-mode sensor exhibits excellent selectivity and reliability for detecting Gly, and can be successfully applied to the analysis of real samples such as tap water, lake water, and fruit washing water. The current research efforts are expected to provide new perspectives for designing highly active photoresponsive nanozymes and their stimuli-responsive sensing systems, paving the way for their applications in portable dual-mode chemical sensing and environmental monitoring.


Assuntos
Colorimetria , Glicina , Glifosato , Imidazóis , Estruturas Metalorgânicas , Metaloporfirinas , Zeolitas , Glicina/análogos & derivados , Glicina/química , Glicina/análise , Colorimetria/métodos , Zeolitas/química , Imidazóis/química , Metaloporfirinas/química , Estruturas Metalorgânicas/química , Poluentes Químicos da Água/análise , Espectrometria de Fluorescência/métodos , Processos Fotoquímicos , Limite de Detecção , Herbicidas/análise , Fluorescência , Smartphone
2.
Biosens Bioelectron ; 251: 116080, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324972

RESUMO

Highly sensitive ratiometric biosensors have attracted much attention in biomarker detection, but most rely on single-mode signals, which can affect accuracy. The development of new principles and methods for dual-mode ratiometric sensing can enhance detection accuracy. Herein, the zinc(II) meso-tetra(4-carboxyphenyl) porphyrin/MXene (ZnTCPP/Ti3C2Tx) hybrids with phosphate-induced stimuli-responsive behavior are used to develop a novel dual-mode fluorescent/electrochemiluminescent (FL/ECL) ratiometric biosensor. The composites exhibit FL quenching and enhanced ECL behavior involving dissolved O2. The FL quenching of ZnTCPP/Ti3C2Tx is caused by energy transfer (EnT) and photo-induced electron transfer (PET) from ZnTCPP to Ti3C2Tx. While the introduction of MXene compensates for the inadequate conductivity of ZnTCPP, facilitating electron transfer, which further makes the surface ZnTCPP more capable of activating O2 to produce singlet oxygen (1O2), thereby generating enhanced cathodic ECL. Furthermore, phosphate ions (PO43-) can interact with the Ti sites of ZnTCPP/Ti3C2Tx, leading to competition for coordination with ZnTCPP, which in turn detaches ZnTCPP, resulting in enhanced FL and reduced ECL. On the basis of the phosphate-induced stimuli-responsive behavior, the dual-mode FL/ECL ratiometric biosensing of alkaline phosphatase (ALP) is achieved through ALP-catalyzed production of PO43- cascade effect with ZnTCPP/Ti3C2Tx. The linear detection range for ALP is 0.1-50 mU/mL, with a detection limit as low as 0.0083 mU/mL. This proposed ZnTCPP/Ti3C2Tx composites with stimuli-responsive behavior is expected to provide new ideas for the development of high-sensitivity dual-mode ratiometric biosensors with promising applications in the precise detection of important biomarkers.


Assuntos
Técnicas Biossensoriais , Metaloporfirinas , Nitritos , Fosfatos , Elementos de Transição , Técnicas Biossensoriais/métodos , Corantes
3.
Langmuir ; 40(5): 2708-2718, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277771

RESUMO

Due to their highly exposed active sites and high aspect ratio caused by their substantial lateral dimension and thin thickness, two-dimensional (2D) metal-organic framework (MOF) nanosheets are currently considered a potential hybrid material for electrochemical sensing. Herein, we present a nickel-based porphyrinic MOF nanosheet as a versatile and robust platform with an enhanced electrochemical detection performance. It is important to note that the nickel porphyrin ligand reacted with Cu(NO3)2·3H2O in a solvothermal process, with polyvinylpyrrolidone (PVP) acting as the surfactant to control the anisotropic development of creating a 2D Cu-TCPP(Ni) MOF nanosheet structure. To realize the exceptional selectivity, sensitivity, and stability of the synthesized 2D Cu-TCPP(Ni) MOF nanosheet, a laser-induced graphene electrode was modified with the MOF nanosheet and employed as a sensor for the detection of p-nitrophenol (p-NP). With a detection range of 0.5-200 µM for differential pulse voltammetry (DPV) and 0.9-300 µM for cyclic voltammetry (CV), the proposed sensor demonstrated enhanced electrochemical performance, with the limit of detection (LOD) for DPV and CV as 0.1 and 0.3 µM, respectively. The outstanding outcome of the sensor is attributed to the 2D Cu-TCPP(Ni) MOF nanosheet's substantial active surface area, innate catalytic activity, and superior adsorption capacity. Furthermore, it is anticipated that the proposed electrode sensor will make it possible to create high-performance electrochemical sensors for environmental point-of-care testing since it successfully detected p-NP in real sample analysis.

4.
Food Chem ; 442: 138478, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38278102

RESUMO

The effects of different concentrations of catechin on the stability of myofibrillar protein-soybean oil emulsions and the related mechanisms were investigated. Adding 10 µmol/g catechin had no obvious effects on the emulsion stability and myosin structure, but 50, 100 and 200 µmol/g catechin decreased the emulsion stability. The microstructure observations showed that 10 µmol/g catechin caused a dense and uniform emulsion to form, whereas 50, 100 and 200 µmol/g catechin induced the merging of oil droplets. The addition of 50, 100 and 200 µmol/g catechin caused a decline in both the total sulfhydryl content and surface hydrophobicity, suggesting protein aggregation, which decreased the adsorption capacity of myosin and the elasticity of interfacial film. These results suggested that higher concentrations of catechin were detrimental to the emulsifying properties of myosin and that the dose should be considered when it is used as an antioxidant.


Assuntos
Catequina , Óleo de Soja , Emulsões/química , Óleo de Soja/química , Catequina/química , Miosinas , Água/química
5.
Food Funct ; 15(1): 96-109, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38047401

RESUMO

The pursuit of food-based alternatives to conventional therapies for ulcerative colitis (UC) demands immediate attention. In prior investigations, we synthesized WPI-stachyose conjugates through the Maillard reaction, identifying them as functional prebiotics. However, their impact on in vivo regulation of gut microbiota remains inadequately explored. To bridge this gap, we delved into the therapeutic effects and mechanisms of WPI-stachyose conjugates as prebiotic-functional components in C57BL/6J mice afflicted with dextran sodium sulfate (DSS)-induced UC. The treatment involving WPI-stachyose conjugates led to significant therapeutic advancements, evident in the reduction of pro-inflammatory cytokine levels and restoration of gut microbiota composition. Noticeable enhancements were observed in UC-associated symptoms, including weight loss, colon length reduction, and tissue damage, notably improving in the treated mice. Remarkably, both the conjugates and the physical combination effectively lowered pro-inflammatory cytokines and oxidative stress, with the conjugates demonstrating enhanced effectiveness. Furthermore, the simultaneous administration of WPI-stachyose conjugates further amplified the presence of beneficial bacteria and elevated short-chain fatty acids, acknowledged for their favorable impact across various conditions. These findings underscore the potential therapeutic application of WPI-stachyose conjugates in addressing DSS-induced UC, offering insights into innovative therapeutic strategies.


Assuntos
Colite Ulcerativa , Colite , Animais , Camundongos , Camundongos Endogâmicos C57BL , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Citocinas , Prebióticos , Sulfato de Dextrana , Modelos Animais de Doenças , Colo
6.
J Sci Food Agric ; 104(3): 1668-1678, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37847204

RESUMO

BACKGROUND: Hemp protein isolates (HPIs), which provide a well-balanced profile of essential amino acids comparable to other high-quality proteins, have recently garnered significant attention. However, the underutilized functional attributes of HPIs have constrained their potential commercial applications within the food and agriculture field. This study advocates the utilization of dynamic-high-pressure-microfluidization (DHPM) for the production of stable high-internal-phase emulsions (HIPEs), offering an efficient approach to fully exploit the potential of HPI resources. RESULTS: The findings underscore the effectiveness of DHPM in producing HPI as a stabilizing agent for HIPEs with augmented antioxidant activity. Microfluidized HPI exhibited consistent adsorption and anchoring at the oil-water interface, resulting in the formation of a dense and compact layer. Concurrently, the compression of droplets within HIPEs gave rise to a polyhedral framework, conferring viscoelastic properties and a quasi-solid behavior to the emulsion. Remarkably, HIPEs stabilized by microfluidized HPI demonstrated superior oxidative and storage stability, attributable to the establishment of an antioxidative barrier by microfluidized HPI particles. CONCLUSION: This study presents an appealing approach for transforming liquid oils into solid-like fats using HPI particles, all without the need for surfactants. HIPEs stabilized by microfluidized HPI particles hold promise as emerging food ingredients for the development of emulsion-based formulations with enhanced oxidative stability, thereby finding application in the food and agricultural industries. © 2023 Society of Chemical Industry.


Assuntos
Cannabis , Emulsões/química , Excipientes , Oxirredução , Antioxidantes/metabolismo , Estresse Oxidativo , Tamanho da Partícula
7.
Natl Sci Rev ; 10(10): nwad106, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38027246

RESUMO

Open-channel droplet arrays have attracted much attention in the fields of biochemical analysis, biofluid monitoring, biomarker recognition and cell interactions, as they have advantages with regard to miniaturization, parallelization, high-throughput, simplicity and accessibility. Such droplet arrays not only improve the sensitivity and accuracy of a biosensor, but also do not require sophisticated equipment or tedious processes, showing great potential in next-generation miniaturized sensing platforms. This review summarizes typical examples of open-channel microdroplet arrays and focuses on diversified biosensing integrated with multiple signal-output approaches (fluorescence, colorimetric, surface-enhanced Raman scattering (SERS), electrochemical, etc.). The limitations and development prospects of open-channel droplet arrays in biosensing are also discussed with regard to the increasing demand for biosensors.

8.
Ultrason Sonochem ; 101: 106679, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939527

RESUMO

The effects of ultrasonic brine on the physicochemical properties, sensory quality and microstructure of low-sodium beef jerkies were investigated. Compared with control jerky brined in 1.5% NaCl solution, both of the direct reduction and partial replacement of 50% NaCl by KCl decreased the sodium content. Ultrasonic treatment resulted in sharp reduction in shear force. KCl substitution together with ultrasonic treatment caused the highest yield, a* value and water content, and the water activity of all groups were below 0.85. Only the direct reduction of NaCl had negative effects on the sensory quality. KCl substitution combined with ultrasonic treatment was the most suitable for producing low-sodium beef jerkies with high quality, possibly because the mixed salt had equal total salt content to control. Meanwhile, the cavitation and mechanical effects of ultrasound may unfold protein structure, increase myofibrillar fragmentation index and break the muscle fiber, thus improving the quality of beef jerky.


Assuntos
Sais , Cloreto de Sódio , Animais , Bovinos , Sódio , Água
9.
Anal Chem ; 95(44): 16383-16391, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37881841

RESUMO

The rational design of efficient nanozymes and the immobilization of enzymes are of great significance for the construction of high-performance biosensors based on nano-/bioenzyme catalytic systems. Herein, a novel V-TCPP(Fe) metal-organic framework nanozyme with a two-dimensional nanosheet morphology is rationally designed by using V2CTx MXene as a metal source and iron tetrakis(4-carboxyphenyl)porphine (FeTCPP) ligand as an organic linker. It exhibits enhanced peroxidase- and catalase-like activities and luminol-H2O2 chemiluminescent (CL) behavior. Based on the experimental and theoretical results, these excellent enzyme-like activities are derived from the two-site synergistic effect between V nodes and FeTCPP ligands in V-TCPP(Fe). Furthermore, a confined catalytic system is developed by zeolitic imidazole framework (ZIF) coencapsulation of the V-TCPP(Fe) nanozyme and bioenzyme. Using the acetylcholinesterase (AChE) as a model, our constructed V-TCPP(Fe)/AChE@ZIF confined catalytic system was successfully used for the colorimetric/CL dual-mode visual biosensing of organophosphorus pesticides. This work is expected to provide new insights into the design of efficient nanozymes and confined catalytic systems, encouraging applications in catalysis and biosensing.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Praguicidas , Acetilcolinesterase , Compostos Organofosforados , Colorimetria/métodos , Peróxido de Hidrogênio , Catálise , Técnicas Biossensoriais/métodos
10.
Nat Hum Behav ; 7(11): 1980-1997, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37735521

RESUMO

Language and social cognition are traditionally studied as separate cognitive domains, yet accumulative studies reveal overlapping neural correlates at the left ventral temporoparietal junction (vTPJ) and the left lateral anterior temporal lobe (lATL), which have been attributed to sentence processing and social concept activation. We propose a common cognitive component underlying both effects: social-semantic working memory. We confirmed two key predictions of our hypothesis using functional MRI. First, the left vTPJ and lATL showed sensitivity to sentences only when the sentences conveyed social meaning; second, these regions showed persistent social-semantic-selective activity after the linguistic stimuli disappeared. We additionally found that both regions were sensitive to the socialness of non-linguistic stimuli and were more tightly connected with the social-semantic-processing areas than with the sentence-processing areas. The converging evidence indicates the social-semantic working-memory function of the left vTPJ and lATL and challenges the general-semantic and/or syntactic accounts for the neural activity of these regions.


Assuntos
Memória de Curto Prazo , Semântica , Humanos , Memória de Curto Prazo/fisiologia , Mapeamento Encefálico , Idioma , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia
11.
Materials (Basel) ; 16(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37687716

RESUMO

As a transfer member at the discontinuous place of vertical load, the deep beam has a complex stress mechanism and many influencing factors, such as compressive strength of concrete, shear span ratio, and reinforcement ratio. At the same time, the stress analysis principle of traditional shallow beams is no longer applicable to the design and calculation of deep-beam structure. The main purpose of this paper was to use the strut-and-tie model to analyze its stress mechanism, and to verify the applicability of the model. Nine high-strength concrete deep-beam specimens with longitudinal reinforcement with an anchor plate of the same size were tested by two-point concentrated loading method. The effects of shear span ratio (0.3, 0.6, and 0.9), longitudinal reinforcement ratio (0.67%, 1.05%, and 1.25%), horizontal reinforcement ratio (0.33%, 0.45%, and 0.50%), and stirrup reinforcement ratio (0.25%, 0.33%, and 0.50%) on the failure mode, deflection curve, characteristic load, crack width, steel bar, and concrete strain of the specimens were analyzed. The results showed that the failure mode of deep-beam specimens was diagonal compression failure. The normal section cracking load was about 15 to 20% of the ultimate load, and the inclined section cracking load was about 30~40% of the ultimate load. The shear span ratio increased from 0.3 to 0.9, and the bearing capacity decreased by 32.9%. When the longitudinal reinforcement ratio increased from 0.67% to 1.25%, the ultimate load increased by 42.6%. The shear span ratio and longitudinal reinforcement ratio have a significant effect on the bearing capacity of the high-strength concrete deep beams with longitudinal reinforcement with an anchor plate. The shear capacity of nine high-strength concrete deep-beam specimens with longitudinal reinforcement with an anchor plate was calculated by national standards, and the results were compared with the calculation results of the Tan-Tang model, the Tan-Cheng model, SSTM, and SSSTM. The analysis showed that the softened strut-and-tie model takes into account the softening effect of compressive concrete, and is a more accurate mechanical model, which can be applied to predict the shear capacity of high-strength concrete deep-beam members with longitudinal reinforcement with an anchor plate.

12.
Int J Biol Macromol ; 252: 126474, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625755

RESUMO

The effects of different concentrations of catechins on the oil-holding capacity, myofibrillar proteins (MPs) structure and adsorbed properties of interfacial proteins in meat batters were investigated. The addition of 100 mg/kg catechin had no negative effects on the physicochemical properties of meat batter. However, 500 and 1500 mg/kg catechin caused an increase in drip loss and deterioration of dynamic rheological properties; the total sulfhydryl content, surface hydrophobicity and α-helix ratio of MPs decreased significantly (p < 0.05); in meat emulsions, the emulsifying property was reduced, the particle size increased, and less interfacial protein was absorbed on the fat globules. All concentrations of catechins significantly (p < 0.05) inhibited lipid oxidation in meat batters. Medium and high concentrations of catechins induced aggregation of MPs via covalent and noncovalent interactions between MPs and MPs or MPs and catechins, which destroyed the gel and emulsifying property of protein and eventually decrease the oil-holding capacity of meat batters.


Assuntos
Catequina , Manipulação de Alimentos , Catequina/química , Proteínas de Membrana , Carne , Interações Hidrofóbicas e Hidrofílicas , Emulsões/química
14.
Anal Chem ; 95(28): 10785-10794, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37427434

RESUMO

A novel metal-organic framework (MOF)-on-MOF dual enzyme-mimic nanozyme was designed as enhanced cascade signal amplification for the colorimetric and chemiluminescent (CL) dual-mode aptasensing. The MOF-on-MOF hybrid is composed of MOF-818 with catechol oxidase-like activity and iron porphyrin MOF [PMOF(Fe)] with peroxidase-like activity, called MOF-818@PMOF(Fe). MOF-818 can catalyze the 3,5-di-tert-butylcatechol substrate and produce H2O2 in situ. Subsequently, PMOF(Fe) catalyzes H2O2 to produce reactive oxygen species, which oxidize 3,3',5,5'-tetramethylbenzidine or luminol to produce color or luminescence. Thanks to the nano-proximity effect and the confinement effect, the efficiency of the biomimetic cascade catalysis is greatly improved, which in turn generates enhanced colorimetric and CL signals. Taking the detection of chlopyrifos as an example, the prepared dual enzyme-mimic MOF nanozyme is combined with the aptamer with specific recognition ability to develop a colorimetric/CL dual-mode aptasensor for highly sensitive and selective detection of chlorpyrifos. The proposed MOF-on-MOF dual nanozyme-enhanced cascade system may provide a new pathway for the further development of a biomimetic cascade sensing platform.


Assuntos
Estruturas Metalorgânicas , Colorimetria , Peróxido de Hidrogênio , Peroxidases/metabolismo , Catálise
15.
Small ; 19(37): e2300926, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37150851

RESUMO

Metal single-atom and internal structural defects typically coexist in M-N-C materials obtained through the existing basic pyrolysis processes. Identifying a correlation between them to understand the structure-activity relationship and achieve efficient catalytic performance is important, particularly for the rare-earth (RE) elements with rich electron orbitals and strong coordination capabilities. Herein, a novel single-atom catalyst based on the RE element lutetium is successfully synthesized on a N-C support. Structural and simulation analyses demonstrate that the formation of a LuN6 structural site with an individual defect because of pyrolysis is thermodynamically favorable in Lu-N-C. Using KHCO3 -based electrolytes facilitates the fall of the K+ cations into the defective sites of Lu-N-C, thus enabling improved CO2 capture and activation, which increases the catalyst conductivity for Lu-N-C. In this study, the catalyst exhibits a Faradaic efficiency of 95.1% for CO at a current density of 18.2 mA cm-2 during carbon dioxide reduction reaction. This study thus provides new insights into understanding RE-N-C materials for energy utilization.

16.
Math Biosci Eng ; 20(4): 6652-6665, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-37161122

RESUMO

The developing of DNA microarray technology has made it possible to study the cancer in view of the genes. Since the correlation between the genes is unconsidered, current unsupervised feature selection models may select lots of the redundant genes during the feature selecting due to the over focusing on genes with similar attribute. which may deteriorate the clustering performance of the model. To tackle this problem, we propose an adaptive feature selection model here in which reconstructed coefficient matrix with additional constraint is introduced to transform original data of high dimensional space into a low-dimensional space meanwhile to prevent over focusing on genes with similar attribute. Moreover, Alternative Optimization (AO) is also proposed to handle the nonconvex optimization induced by solving the proposed model. The experimental results on four different cancer datasets show that the proposed model is superior to existing models in the aspects such as clustering accuracy and sparsity of selected genes.


Assuntos
Algoritmos , Análise por Conglomerados
17.
J Sci Food Agric ; 103(10): 4899-4907, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36929328

RESUMO

BACKGROUND: To study the effects of quercetin on the functionality of myofibrillar proteins (MPs), various levels of quercetin (0, 10, 50, 100 and 200 µmol g-1 protein) were added to MP solution and the structure and gel properties of MPs were determined. RESULTS: Compared with the control MPs not treated with quercetin, adding 10, 50 and 100 µmol g-1 quercetin caused a significant (P < 0.05) loss of sulfhydryls; 10 and 50 µmol g-1 quercetin enhanced the surface hydrophobicity significantly (P < 0.05), and 50, 100 and 200 µmol g-1 quercetin reduced the fluorescence intensity of tryptophan. Additions of 50, 100 and 200 µmol g-1 quercetin resulted in a significant (P < 0.05) reduction in MP solubility. Adding 10, 50 and 100 µmol g-1 quercetin did not significantly (P > 0.05) change the gel strength and water-holding ability of MPs than control, but 200 µmol g-1 quercetin declined the gel properties significantly (P < 0.05). The microstructure and dynamic rheological properties confirmed the results of the gel properties of MPs affected by various levels of quercetin. CONCLUSION: The results obtained in the present study show that mildly high levels of quercetin can maintain the gel properties of MPs, which may be a result of the moderate MP cross-linkage and aggregation caused by the covalent and non-covalent interactions of MPs. © 2023 Society of Chemical Industry.


Assuntos
Carne de Porco , Carne Vermelha , Animais , Suínos , Quercetina/análise , Proteínas Musculares/química , Carne Vermelha/análise , Miofibrilas/química , Conformação Proteica , Géis/química
18.
Sci Data ; 10(1): 106, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823158

RESUMO

Evidence from psychology and cognitive neuroscience indicates that the human brain's semantic system contains several specific subsystems, each representing a particular dimension of semantic information. Word ratings on these different semantic dimensions can help investigate the behavioral and neural impacts of semantic dimensions on language processes and build computational representations of language meaning according to the semantic space of the human cognitive system. Existing semantic rating databases provide ratings for hundreds to thousands of words, which can hardly support a comprehensive semantic analysis of natural texts or speech. This article reports a large database, the Six Semantic Dimension Database (SSDD), which contains subjective ratings for 17,940 commonly used Chinese words on six major semantic dimensions: vision, motor, socialness, emotion, time, and space. Furthermore, using computational models to learn the mapping relations between subjective ratings and word embeddings, we include the estimated semantic ratings for 1,427,992 Chinese and 1,515,633 English words in the SSDD. The SSDD will aid studies on natural language processing, text analysis, and semantic representation in the brain.

19.
Brain Struct Funct ; 228(1): 321-339, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35394555

RESUMO

Neuroimaging studies have found both semantic and non-semantic effects in the default mode network (DMN), leading to an intense debate on the role of the DMN in semantic processes. Four different views have been proposed: (1) the general semantic view holds that the DMN contains several hub regions supporting general semantic processes; (2) the non-semantic view holds that the semantic effects observed in the DMN (especially the ventral angular gyrus) are confounded by difficulty and do not reflect semantic processing per se; (3) the multifunction view holds that the same areas in the DMN can support both semantic and non-semantic functions; and (4) the multisystem view holds that the DMN contains multiple subnetworks supporting different aspects of semantic processes separately. Using an fMRI experiment, we found that in one of the subnetworks of the DMN, called the social semantic network, all areas showed social semantic activation and difficulty-induced deactivation. The distributions of two non-semantic effects, that is, difficulty-induced and task-induced deactivations, showed dissociation in the DMN. In the bilateral angular gyri, the ventral subdivisions showed social semantic activation independent of difficulty, while the dorsal subdivisions showed no semantic effect but difficulty-induced activation. Our findings provide two insights into the semantic and non-semantic functions of the DMN, which are consistent with both the multisystem and multifunction views: first, the same areas of the DMN can support both social semantic and non-semantic functions; second, similar to the multiple semantic effects of the DMN, the non-semantic effects also vary across its subsystems.


Assuntos
Mapeamento Encefálico , Rede de Modo Padrão , Lobo Parietal/fisiologia , Imageamento por Ressonância Magnética , Neuroimagem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
20.
J Sci Food Agric ; 103(5): 2544-2553, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36571448

RESUMO

BACKGROUND: The application of curcumin (CUR) in the food industry is limited by its instability, hydrophobicity and low bioavailability. Yeast cell protein (YCP) is a by-product of spent brewer's yeast, which has the potential to deliver bioactive substances. However, the environmental stresses such as pH, salt and heat treatment has restricted its application in the food industry. Maillard reaction as a non-enzymatic browning reaction can improve protein stability under environmental stress. RESULTS: The CUR was successfully encapsulated into the hydrophobic core of YCP/glycated YCP (GYCP) and enhanced by hydrogen bonding, resulting in static fluorescence quenching of YCP/GYCP. The average diameter and dispersibility of GYPC-CUR nanocomplex were significantly improved after glucose glycation (121.40 nm versus 139.70 nm). Moreover, the encapsulation capacity of CUR was not influenced by glucose glycation. The oxidative stability and bioaccessibility of CUR in nanocomplexes were increased compared with free CUR, especially complexed with GYCP conjugates. CONCLUSION: Steric hindrance provided by glucose conjugation improved the enviriomental stability, oxidative activity and bioaccessibility of CUR in nanocomplexes. Thus, glucose-glycated YCP has potential application as a delivery carrier for hydrophobic compounds in functional foods. © 2022 Society of Chemical Industry.


Assuntos
Antineoplásicos , Curcumina , Nanopartículas , Curcumina/química , Antioxidantes , Saccharomyces cerevisiae , Reação de Maillard , Antineoplásicos/química , Tamanho da Partícula , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...