Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
Cell Death Dis ; 15(7): 493, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987529

RESUMO

Lung cancer is a leading cause of cancer-related mortality globally, with a dismal 5-year survival rate, particularly for Lung Adenocarcinoma (LUAD). Mechanical changes within the tumor microenvironment, such as extracellular matrix (ECM) remodeling and fibroblast activity, play pivotal roles in cancer progression and metastasis. However, the specific impact of the basement membrane (BM) on the mechanical characteristics of LUAD remains unclear. This study aims to identify BM genes influencing internal mechanical stress in tumors, elucidating their effects on LUAD metastasis and therapy resistance, and exploring strategies to counteract these effects. Using Matrigel overlay and Transwell assays, we found that mechanical stress, mimicked by matrix application, augmented LUAD cell migration and invasion, correlating with ECM alterations and activation of the epithelial-mesenchymal transition (EMT) pathway. Employing machine learning, we developed the SVM_Score model based on relevant BM genes, which accurately predicted LUAD patient prognosis and EMT propensity across multiple datasets. Lower SVM_Scores were associated with worse survival outcomes, elevated cancer-related pathways, increased Tumor Mutation Burden, and higher internal mechanical stress in LUAD tissues. Notably, the SVM_Score was closely linked to COL5A1 expression in myofibroblasts, a key marker of mechanical stress. High COL5A1 expression from myofibroblasts promoted tumor invasiveness and EMT pathway activation in LUAD cells. Additionally, treatment with Sorafenib, which targets COL5A1 secretion, attenuated the tumor-promoting effects of myofibroblast-derived COL5A1, inhibiting LUAD cell proliferation, migration, and enhancing chemosensitivity. In conclusion, this study elucidates the complex interplay between mechanical stress, ECM alterations, and LUAD progression. The SVM_Score emerges as a robust prognostic tool reflecting tumor mechanical characteristics, while Sorafenib intervention targeting COL5A1 secretion presents a promising therapeutic strategy to mitigate LUAD aggressiveness. These findings deepen our understanding of the biomechanical aspects of LUAD and offer insights for future research and clinical applications.


Assuntos
Adenocarcinoma de Pulmão , Colágeno Tipo V , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Miofibroblastos , Estresse Mecânico , Humanos , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Miofibroblastos/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Colágeno Tipo V/metabolismo , Colágeno Tipo V/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , Movimento Celular/efeitos dos fármacos , Metástase Neoplásica , Camundongos , Microambiente Tumoral , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Matriz Extracelular/metabolismo
2.
J Biomater Appl ; : 8853282241265920, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042854

RESUMO

The skin injuries pose a substantial public health challenge, not only due to their physical trauma but also the accompanying pain and complexities in wound healing. In the current research, Inula helenium extract and lidocaine were loaded into electrospun PVA/calcium alginate nanofibers to promote skin wounds healing and alleviate the resulting pain. Various in vitro experiments were utilized to characterize these dressings. Wound healing potential of these constructs and their analgesic effects were studied in a rat model of skin wounds. Our developed scaffolds released the loaded drugs in a slow manner and showed antioxidative and anti-inflammatory activities. Fiber size measurement showed that drug-loaded and drug-free scaffolds had around 418.025 ± 140.11 nm and 505.51 ± 93.29 nm mean fiber size, respectively. Bacterial penetration assay confirmed that drug-loaded scaffolds reduced bacterial infiltration through the matrices. Wound healing study showed that on day 14th, the dressings loaded with inula helenium extract and lidocaine could close the wounds up to 91.26 ± 5.93%. In addition, these scaffolds significantly reduced the animals pain sensitivity. ELISA assay results implied that these dressings modulated inflammation and reduced tissue's oxidative stress.

3.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892227

RESUMO

The primary cilium is a microtubule-based sensory organelle that plays a critical role in signaling pathways and cell cycle progression. Defects in the structure and/or function of the primary cilium result in developmental diseases collectively known as ciliopathies. However, the constituents and regulatory mechanisms of the primary cilium are not fully understood. In recent years, the activity of the epigenetic modifier SMYD3 has been shown to play a key role in the regulation of cell cycle progression. However, whether SMYD3, a histone/lysine methyltransferase, contributes to the regulation of ciliogenesis remains unknown. Here, we report that SMYD3 drives ciliogenesis via the direct and indirect regulation of cilia-associated components. We show that SMYD3 is a novel component of the distal appendage and is required for centriolar appendage assembly. The loss of SMYD3 decreased the percentage of ciliated cells and resulted in the formation of stumpy cilia. We demonstrated that SMYD3 modulated the recruitment of centrosome proteins (Cep164, Fbf1, Ninein, Ttbk2 and Cp110) and the trafficking of intraflagellar transport proteins (Ift54 and Ift140) important for cilia formation and maintenance, respectively. In addition, we showed that SMYD3 regulated the transcription of cilia genes and bound to the promoter regions of C2cd3, Cep164, Ttbk2, Dync2h1 and Cp110. This study provides insights into the role of SMYD3 in cilia biology and suggests that SMYD3-mediated cilia formation/function may be relevant for cilia-dependent signaling in ciliopathies.


Assuntos
Centrossomo , Cílios , Histona-Lisina N-Metiltransferase , Transporte Proteico , Cílios/metabolismo , Humanos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Centrossomo/metabolismo , Animais , Flagelos/metabolismo , Camundongos , Proteínas Associadas a Centrossomos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38702168

RESUMO

Objective: Type 2 diabetes mellitus (T2DM) is strongly associated with obesity, a significant risk factor for the occurrence and progression of chronic kidney disease. In recent years, weight loss surgery has become an important treatment option for diabetes. This study examined whether Roux-en-Y gastric bypass surgery, a new metabolic bariatric surgery approach, can effectively reduce the risk of long-term renal impairment in individuals with type 2 diabetes. Methods: In a cohort study, 60 individuals suffering from both obesity and type 2 diabetes were stratified and randomly divided into 2 groups based on gender and weight. The control group (30 cases) received internal medicine treatment; the observation group (30 cases) received Roux-en-Y gastric bypass surgery. The study compared the changes in glycated hemoglobin, fasting blood glucose, fasting insulin, fasting C-peptide, postprandial 2-hour blood glucose, postprandial 2-hour insulin, postprandial 2-hour C-peptide, weight, waist circumference, and BMI before and at 6, 12, and 18 months after treatment. Kidney function-related indicators such as urinary protein excretion, microalbuminuria, and creatinine clearance were also compared. Results: There were no significant differences in the above indicators between the 2 groups before treatment (P > .05). After 6, 12, and 18 months of treatment, the levels of glycated hemoglobin, fasting blood glucose, fasting insulin, fasting C-peptide, postprandial 2-hour blood glucose, postprandial 2-hour insulin, postprandial 2-hour C-peptide, weight, waist circumference, and BMI were significantly decreased compared to before treatment (P < .05). Urinary protein excretion and microalbuminuria decreased, while creatinine clearance increased after 6, 12, and 18 months of surgery (P < .05). The differences in indicators between the 2 groups at each point after surgery were statistically significant (P < .05). Conclusion: Roux-en-Y gastric bypass surgery was more effective than medical treatment in treating type 2 diabetes and mitigating long-term kidney function damage. These findings confirm the clinical utility of Roux-en-Y gastric bypass surgery in these conditions, indicating its potential for generalization and reference.

5.
Kidney Int ; 106(2): 258-272, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782200

RESUMO

Alteration of DNA methylation leads to diverse diseases, and the dynamic changes of DNA methylation (DNAm) on sets of CpG dinucleotides in mammalian genomes are termed "DNAm age" and "epigenetic clocks" that can predict chronological age. However, whether and how dysregulation of DNA methylation promotes cyst progression and epigenetic age acceleration in autosomal dominant polycystic kidney disease (ADPKD) remains elusive. Here, we show that DNA methyltransferase 1 (DNMT1) is upregulated in cystic kidney epithelial cells and tissues and that knockout of Dnmt1 and targeting DNMT1 with hydralazine, a safe demethylating agent, delays cyst growth in Pkd1 mutant kidneys and extends life span of Pkd1 conditional knockout mice. With methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq), DNMT1 chromatin immunoprecipitation (ChIP)-sequencing and RNA-sequencing analysis, we identified two novel DNMT1 targets, PTPRM and PTPN22 (members of the protein tyrosine phosphatase family). PTPRM and PTPN22 function as mediators of DNMT1 and the phosphorylation and activation of PKD-associated signaling pathways, including ERK, mTOR and STAT3. With whole-genome bisulfide sequencing in kidneys of patients with ADPKD versus normal individuals, we found that the methylation of epigenetic clock-associated genes was dysregulated, supporting that epigenetic age is accelerated in the kidneys of patients with ADPKD. Furthermore, five epigenetic clock-associated genes, including Hsd17b14, Itpkb, Mbnl1, Rassf5 and Plk2, were identified. Thus, the diverse biological roles of these five genes suggest that their methylation status may not only predict epigenetic age acceleration but also contribute to disease progression in ADPKD.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Epigênese Genética , Camundongos Knockout , Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/enzimologia , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Animais , Humanos , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Camundongos , Transdução de Sinais , Modelos Animais de Doenças , Masculino , Progressão da Doença , Rim/patologia , Rim/metabolismo
6.
J Exp Clin Cancer Res ; 43(1): 112, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38610018

RESUMO

BACKGROUND: The dysregulated mechanistic target of rapamycin complex 1 (mTORC1) signaling plays a critical role in ferroptosis resistance and tumorigenesis. However, the precise underlying mechanisms still need to be fully understood. METHODS: Endoplasmic reticulum oxidoreductase 1 alpha (ERO1α) expression in mTORC1-activated mouse embryonic fibroblasts, cancer cells, and laryngeal squamous cell carcinoma (LSCC) clinical samples was examined by quantitative real-time PCR (qRT-PCR), western blotting, immunofluorescence (IF), and immunohistochemistry. Extensive in vitro and in vivo experiments were carried out to determine the role of ERO1α and its downstream target, member 11 of the solute carrier family 7 (SLC7A11), in mTORC1-mediated cell proliferation, angiogenesis, ferroptosis resistance, and tumor growth. The regulatory mechanism of ERO1α on SLC7A11 was investigated via RNA-sequencing, a cytokine array, an enzyme-linked immunosorbent assay, qRT-PCR, western blotting, IF, a luciferase reporter assay, and a chromatin immunoprecipitation assay. The combined therapeutic effect of ERO1α inhibition and the ferroptosis inducer imidazole ketone erastin (IKE) on mTORC1-activated cells was evaluated using cell line-derived xenografts, LSCC organoids, and LSCC patient-derived xenograft models. RESULTS: ERO1α is a functional downstream target of mTORC1. Elevated ERO1α induced ferroptosis resistance and exerted pro-oncogenic roles in mTORC1-activated cells via upregulation of SLC7A11. Mechanically, ERO1α stimulated the transcription of SLC7A11 by activating the interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) pathway. Moreover, ERO1α inhibition combined with treatment using the ferroptosis inducer IKE exhibited synergistic antitumor effects on mTORC1-activated tumors. CONCLUSIONS: The ERO1α/IL-6/STAT3/SLC7A11 pathway is crucial for mTORC1-mediated ferroptosis resistance and tumor growth, and combining ERO1α inhibition with ferroptosis inducers is a novel and effective treatment for mTORC1-related tumors.


Assuntos
Ferroptose , Animais , Camundongos , Humanos , Regulação para Cima , Interleucina-6 , Fibroblastos , Transformação Celular Neoplásica , Sistema y+ de Transporte de Aminoácidos/genética
7.
J Cancer ; 15(9): 2601-2612, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577613

RESUMO

Purpose: Lung cancer is a major cause of morbidity and mortality globally, necessitating the identification of predictive markers for effective immunotherapy. Mutations in SWI/SNF chromatin remodeling complex genes were reported sensitized human tumors to immune checkpoint inhibitors (ICIs), but the underlying mechanisms are unclear. This study aims to investigate the association between SWI/SNF gene ARID1B mutation and ICI response in non-small cell lung cancer (NSCLC) patients, to explore the functional consequences of ARID1B mutation on DNA damage response, immune microenvironment, and cGAS-STING pathway activation. Methods: TCGA LUAD, LUSC, and AACR GENIE data are analyzed to assess ARID1B mutation status in NSCLC patients. Prognostic analysis evaluates the effect of ARID1B mutation on patient outcomes. In vitro experiments carried to investigate the consequences of ARID1B knockdown on DNA damage response and repair. The immune microenvironment is assessed based on ARID1B expression, and the relationship between ARID1B and the cGAS-STING pathway is explored. Results: ARID1B mutation frequency is 5.7% in TCGA databases and 4.4% in the AACR GENIE project. NSCLC patients with ARID1B mutation showed improved overall and progression-free survival following ICIs treatment. ARID1B knockdown in lung cancer cell lines enhances DNA damage, impairs DNA repair, alters chromatin accessibility, and activates the cGAS-STING pathway. ARID1B deficiency is associated with immune suppression, indicated by reduced immune scores, decreased immune cell infiltration, and negative correlations with immune-related cell types and functions. Conclusion: ARID1B mutation may predict improved response to ICIs in NSCLC patients. ARID1B mutation leads to impaired DNA damage response and repair, altered chromatin accessibility, and cGAS-STING pathway activation. These findings provide insights into ARID1B's biology and therapeutic implications in lung cancer, highlighting its potential as a target for precision medicine and immunotherapy. Further validation and clinical studies are warranted.

8.
J Transl Med ; 22(1): 254, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459588

RESUMO

BACKGROUND: Although hepatitis B virus (HBV) infection is a major risk factor for hepatic cancer, the majority of HBV carriers do not develop this lethal disease. Additional molecular alterations are thus implicated in the process of liver tumorigenesis. Since phosphatase and tensin homolog (PTEN) is decreased in approximately half of liver cancers, we investigated the significance of PTEN deficiency in HBV-related hepatocarcinogenesis. METHODS: HBV-positive human liver cancer tissues were checked for PTEN expression. Transgenic HBV, Alb-Cre and Ptenfl/fl mice were inter-crossed to generate WT, HBV, Pten-/- and HBV; Pten-/- mice. Immunoblotting, histological analysis and qRT-PCR were used to study these livers. Gp73-/- mice were then mated with HBV; Pten-/- mice to illustrate the role of hepatic tumor biomarker golgi membrane protein 73 (GP73)/ golgi membrane protein 1 (GOLM1) in hepatic oncogenesis. RESULTS: Pten deletion and HBV transgene synergistically aggravated liver injury, inflammation, fibrosis and development of mixed hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). GP73 was augmented in HBV; Pten-/- livers. Knockout of GP73 blunted the synergistic effect of deficient Pten and transgenic HBV on liver injury, inflammation, fibrosis and cancer development. CONCLUSIONS: This mixed HCC-ICC mouse model mimics liver cancer patients harboring HBV infection and PTEN/AKT signaling pathway alteration. Targeting GP73 is a promising therapeutic strategy for cancer patients with HBV infection and PTEN alteration.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , PTEN Fosfo-Hidrolase , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/patologia , Fibrose , Hepatite B/complicações , Vírus da Hepatite B , Inflamação/patologia , Fígado/patologia , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Camundongos Knockout , PTEN Fosfo-Hidrolase/metabolismo
9.
Biomed Pharmacother ; 173: 116424, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471273

RESUMO

The prevalence of retinal degenerative diseases, including age-related macular degeneration and retinitis pigmentosa, has been increasing globally and is linked to the aging population and improved life expectancy. These diseases are characterized by chronic, progressive neuronal damage or depletion of the photoreceptor cells in the retina, and limited effective treatment options are currently available. Mesenchymal stem cell-derived exosomes (MSC-EXOs) containing cytokines, growth factors, lipids, mRNA, and miRNA, which act as mediators of intercellular communication transferring bioactive molecules to recipient cells, offer an appealing, non-cellular nanotherapeutic approach for retinal degenerative diseases. However, treatment specificity is compromised due to their high heterogeneity in size, content, functional effects, and parental cellular source. To improve this, engineered MSC-EXOs with increased drug-loading capacity, targeting ability, and resistance to bodily degradation and elimination have been developed. This review summarizes the recent advances in miRNAs of MSC-EXOs as a treatment for retinal degeneration, discussing the strategies and methods for engineering therapeutic MSC-EXOs. Notably, to address the single functional role of engineered MSC-EXOs, we propose a novel concept called "Compound Engineered MSC-EXOs (Co-E-MSC-EXOs)" along with its derived potential therapeutic approaches. The advantages and challenges of employing Co-E-MSC-EXOs for retinal degeneration in clinical applications, as well as the strategies and issues related to them, are also highlighted.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Degeneração Retiniana , Humanos , Idoso , Exossomos/metabolismo , Degeneração Retiniana/terapia , Degeneração Retiniana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Citocinas/metabolismo , Células-Tronco Mesenquimais/metabolismo
10.
Biomedicines ; 12(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540216

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disorder worldwide and progresses to end-stage renal disease (ESRD). However, its precise mechanism is not fully understood. In recent years, epigenetic reprogramming has drawn increasing attention regarding its effect on cyst growth. However, considering the complexity of epigenetic mechanisms and the broad range of alterations of epigenetic components in ADPKD, identifying more specific epigenetic factors and understanding how they are mechanistically linked to promote cyst growth is relevant for the development of treatment for ADPKD. Here, we find that the histone methyltransferase SMYD3, which activates gene transcription via histone H3 lysine 4 trimethylation (H3K4me3), is upregulated in PKD1 mutant mouse and human ADPKD kidneys. Genetic knockout of SMYD3 in a PKD1 knockout mouse model delayed cyst growth and improved kidney function compared with PKD1 single knockout mouse kidneys. Immunostaining and Western blot assays indicated that SMYD3 regulated PKD1-associated signaling pathways associated with proliferation, apoptosis, and cell cycle effectors in PKD1 mutant renal epithelial cells and tissues. In addition, we found that SMYD3 localized to the centrosome and regulated mitosis and cytokinesis via methylation of α-tubulin at lysine 40. In addition, SMYD3 regulated primary cilia assembly in PKD1 mutant mouse kidneys. In summary, our results demonstrate that overexpression of SMYD3 contributes to cyst progression and suggests targeting SMYD3 as a potential therapeutic strategy for ADPKD.

11.
Proc Natl Acad Sci U S A ; 121(8): e2314128121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38359291

RESUMO

Aberrant lysine lactylation (Kla) is associated with various diseases which are caused by excessive glycolysis metabolism. However, the regulatory molecules and downstream protein targets of Kla remain largely unclear. Here, we observed a global Kla abundance profile in colorectal cancer (CRC) that negatively correlates with prognosis. Among lactylated proteins detected in CRC, lactylation of eEF1A2K408 resulted in boosted translation elongation and enhanced protein synthesis which contributed to tumorigenesis. By screening eEF1A2 interacting proteins, we identified that KAT8, a lysine acetyltransferase that acted as a pan-Kla writer, was responsible for installing Kla on many protein substrates involving in diverse biological processes. Deletion of KAT8 inhibited CRC tumor growth, especially in a high-lactic tumor microenvironment. Therefore, the KAT8-eEF1A2 Kla axis is utilized to meet increased translational requirements for oncogenic adaptation. As a lactyltransferase, KAT8 may represent a potential therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , Biossíntese de Proteínas , Humanos , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Catálise , Microambiente Tumoral , Histona Acetiltransferases
12.
Transl Res ; 268: 51-62, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38244769

RESUMO

Due to soared obesity population worldwide, hepatosteatosis is becoming a major risk factor for hepatocellular carcinoma (HCC). Undertaken molecular events during the progression of steatosis to liver cancer are thus under intensive investigation. In this study, we demonstrated that high-fat diet potentiated mouse liver AKT2. Hepatic AKT2 hyperactivation through gain-of-function mutation of Akt2 (Akt2E17K) caused spontaneous hepatosteatosis, injury, inflammation, fibrosis, and eventually HCC in mice. AKT2 activation also exacerbated lipopolysaccharide and D-galactosamine hydrochloride-induced injury/inflammation and N-Nitrosodiethylamine (DEN)-induced HCC. A positive correlation between AKT2 activity and SCD1 expression was observed in human HCC samples. Activated AKT2 enhanced the production of monounsaturated fatty acid which was dependent on SREBP1 upregulation of SCD1. Blockage of active SREBP1 and ablation of SCD1 reduced steatosis, inflammation, and tumor burden in DEN-treated Akt2E17K mice. Therefore, AKT2 activation is crucial for the development of steatosis-associated HCC which can be treated with blockage of AKT2-SREBP1-SCD1 signaling cascade.


Assuntos
Metabolismo dos Lipídeos , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Estearoil-CoA Dessaturase , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Humanos , Masculino , Camundongos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
14.
Chin Med J (Engl) ; 137(2): 181-189, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-37612257

RESUMO

BACKGROUND: Liver cancer is largely resistant to chemotherapy. This study aimed to identify the effective chemotherapeutics for ß-catenin-activated liver cancer which is caused by gain-of-function mutation of catenin beta 1 ( CTNNB1 ), the most frequently altered proto-oncogene in hepatic neoplasms. METHODS: Constitutive ß-catenin-activated mouse embryonic fibroblasts (MEFs) were established by deleting exon 3 ( ß-catenin Δ(ex3)/+ ), the most common mutation site in CTNNB1 gene. A screening of 12 widely used chemotherapy drugs was conducted for the ones that selectively inhibited ß-catenin Δ(ex3)/+ but not for wild-type MEFs. Untargeted metabolomics was carried out to examine the alterations of metabolites in nucleotide synthesis. The efficacy and selectivity of methotrexate (MTX) on ß-catenin-activated human liver cancer cells were determined in vitro . Immuno-deficient nude mice subcutaneously inoculated with ß-catenin wild-type or mutant liver cancer cells and hepatitis B virus ( HBV ); ß-catenin lox(ex3)/+ mice were used, respectively, to evaluate the efficacy of MTX in the treatment of ß-catenin mutant liver cancer. RESULTS: MTX was identified and validated as a preferential agent against the proliferation and tumor formation of ß-catenin-activated cells. Boosted nucleotide synthesis was the major metabolic aberration in ß-catenin-active cells, and this alteration was also the target of MTX. Moreover, MTX abrogated hepatocarcinogenesis of HBV ; ß-catenin lox(ex3)/+ mice, which stimulated concurrent Ctnnb1- activated mutation and HBV infection in liver cancer. CONCLUSION: MTX is a promising chemotherapeutic agent for ß-catenin hyperactive liver cancer. Since repurposing MTX has the advantages of lower risk, shorter timelines, and less investment in drug discovery and development, a clinical trial is warranted to test its efficacy in the treatment of ß-catenin mutant liver cancer.


Assuntos
Neoplasias Hepáticas , Metotrexato , Camundongos , Animais , Humanos , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Camundongos Nus , beta Catenina/genética , beta Catenina/metabolismo , Fibroblastos/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Vírus da Hepatite B , Nucleotídeos
15.
IEEE Trans Biomed Eng ; 71(4): 1355-1369, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38048236

RESUMO

OBJECTIVE: The incidence of pulmonary nodules has been increasing over the past 30 years. Different types of nodules are associated with varying degrees of malignancy, and they engender inconsistent treatment approaches. Therefore, correct distinction is essential for the optimal treatment and recovery of the patients. The commonly-used medical imaging methods have limitations in distinguishing lung nodules to date. A new approach to this problem may be provided by electrical properties of lung nodules. Nevertheless, difference identification is the basis of correct distinction. So, this paper aims to investigate the differences in electrical properties between various lung nodules. METHODS: At variance with existing studies, benign samples were included for analysis. A total of 252 specimens were collected, including 126 normal tissues, 15 benign nodules, 76 adenocarcinomas, and 35 squamous cell carcinomas. The dispersion properties of each tissue were measured over a frequency range of 100 Hz to 100 MHz. And the relaxation mechanism was analyzed by fitting the Cole-Cole plot. The corresponding equivalent circuit was estimated accordingly. RESULTS: Results validated the significant differences between malignant and normal tissue. Significant differences between benign and malignant lesions were observed in conductivity and relative permittivity. Adenocarcinomas and squamous cell carcinomas are significantly different in conductivity, first-order, second-order differences of conductivity, α-band Cole-Cole plot parameters and capacitance of equivalent circuit. The combination of the different features increased the tissue groups' differences measured by Euclidean distance up to 94.7%. CONCLUSION AND SIGNIFICANCE: In conclusion, the four tissue groups reveal dissimilarity in electrical properties. This characteristic potentially lends itself to future diagnosis of non-invasive lung cancer.


Assuntos
Adenocarcinoma , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Lesões Pré-Cancerosas , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Pulmão , Condutividade Elétrica , Carcinoma de Células Escamosas/diagnóstico por imagem
16.
Altern Ther Health Med ; 30(1): 358-365, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37820663

RESUMO

Objective: To investigate the impact of an Internet + WeChat platform-based "trinity" remote rehabilitation model involving the hospital, community, and family on stroke patient rehabilitation nursing. Methods: 159 patients with stroke who were discharged from Beijing Luhe Hospital of Capital Medical University from January 1, 2018, to December 31, 2019, were selected and divided into a control group (79 cases) and an experimental group (80 cases) by the random drawing method. The control group was given routine nursing, and the experimental group was given remote rehabilitation nursing intervention by using the WeChat network platform based on the control group. Limb function [Fugl-Meyer Assessment Scale (FMA)] and activities of daily living [Modified Barthel Index (MBI)] were evaluated at enrollment and at the end of 3 months, 6 months and 12 months in both groups. The compliance and satisfaction surveys in the two groups were evaluated after 6 months and 12 months of intervention. Results: (1) Before the intervention, there was no statistical significance in FMA score between the two groups (t = 0.798, P > .05). After 3 months, 6 months and 12 months of intervention, the FMA score in the two groups was increased compared with that before intervention (t = 2.463, P < .05), and the FMA scores in the experimental group at the above time points were higher than those in the control group (ts = 7.057, 14.285, Ps < .05). (2) There was no statistical difference in MBI scores between the two groups before intervention (t = 0.798, P > .05). After 3 months, 6 months, and 12 months of intervention, the MBI score in the two groups was increased compared with that before intervention (t = 0.232, P < .05), and MBI scores in the experimental group at the above time points were higher compared to the control group (ts = 4.959, 8.842, 8.131, Ps < .05). (3) The compliance scores in the experimental group were higher than those in the control group after 6 months and 12 months of intervention (ts = 4.959, 8.842, 8.131, Ps < .05). (4) The satisfaction survey scores in the experimental group after 6 months and 12 months of intervention were higher than those in the control group (ts = 2.120 ~ 14.554, Ps < .05). Conclusion: The Hospital-community-family "trinity" stroke rehabilitation model on the WeChat network platform holds significant importance. Enhancing limb function and daily living for stroke patients improves their quality of life and lessens reliance on caregivers. This positively impacts both survivors' well-being and healthcare resources. Increased patient satisfaction and compliance suggest a potential revolution in post-stroke care, favoring a more patient-centered approach. Overall, this model has transformative potential for stroke treatment, offering holistic and patient-focused strategies. Its success promises better rehabilitation outcomes, patient satisfaction, and cost reduction, while paving the way for innovative research in stroke treatment and rehabilitation.


Assuntos
Acidente Vascular Cerebral , Telerreabilitação , Humanos , Alta do Paciente , Atividades Cotidianas , Hospitais Comunitários , Qualidade de Vida , Acidente Vascular Cerebral/terapia , Resultado do Tratamento
17.
Am J Respir Cell Mol Biol ; 70(3): 178-192, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38029327

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a lethal progressive disease with elusive molecular mechanisms and limited therapeutic options. Aberrant activation of fibroblasts is a central hallmark of lung fibrosis. Here, we report that Golgi membrane protein 1 (GOLM1, also known as GP73 or GOLPH2) was increased in the lungs of patients with pulmonary fibrosis and mice with bleomycin (BLM)-induced pulmonary fibrosis. Loss of GOLM1 inhibited proliferation, differentiation, and extracellular matrix deposition of fibroblasts, whereas overexpression of GOLM1 exerted the opposite effects. Similarly, worsening pulmonary fibrosis after BLM treatment was observed in GOLM1-knock-in mice, whereas BLM-treated Golm1-knockout mice exhibited alleviated pulmonary fibrosis and collagen deposition. Furthermore, we identified long noncoding RNA NEAT1 downstream of GOLM1 as a potential mediator of pulmonary fibrosis through increased GOLM1 expression. Depletion of NEAT1 inhibited fibroblast proliferation and extracellular matrix production and reversed the profibrotic effects of GOLM1 overexpression. Additionally, we identified KLF4 as a downstream mediator of GOLM1 signaling to NEAT1. Our findings suggest that GOLM1 plays a pivotal role in promoting pulmonary fibrosis through the GOLM1-KLF4-NEAT1 signaling axis. Targeting GOLM1 and its downstream pathways may represent a novel therapeutic strategy for treating pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Animais , Humanos , Camundongos , Bleomicina , Matriz Extracelular , Fibroblastos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Proteínas de Membrana/genética , Camundongos Knockout , Regulação para Cima
18.
Signal Transduct Target Ther ; 8(1): 451, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38086800

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating fatal neurodegenerative disease with no cure. Receptor-interacting protein kinase 1 (RIPK1) has been proposed to mediate pathogenesis of ALS. Primidone has been identified as an old drug that can also inhibit RIPK1 kinase. We conducted a drug-repurposing biomarker study of primidone as a RIPK1 inhibitor using SOD1G93A mice and ALS patients. SOD1G93A mice treated with primidone showed significant delay of symptomatic onset and improved motor performance. One-hundred-sixty-two ALS participants dosed daily with primidone (62.5 mg) completed 24-week follow-up. A significant reduction was showed in serum levels of RIPK1 and IL-8, which were significantly higher in ALS patients than that of healthy controls (P < 0.0001). Serum RIPK1 levels were correlated positively with the severity of bulbar symptoms (P < 0.05). Our study suggests that serum levels of RIPK1 and IL-8 in peripheral can be used as clinical biomarkers for the activation of RIPK1 in central nervous system in human ALS patients. Repurposing primidone may provide a promising therapeutic strategy for ALS. The effect of primidone for the treatment of other inflammatory diseases may also be considered, since the activation of RIPK1 has been implicated in mediating a variety of inflammatory diseases including COVID-19-associated cytokine release syndrome (CRS). (ChiCTR2200060149).


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Biomarcadores , Interleucina-8/genética , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Doenças Neurodegenerativas/metabolismo , Primidona/metabolismo , Primidona/farmacologia , Primidona/uso terapêutico , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/farmacologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Superóxido Dismutase/uso terapêutico , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/farmacologia
19.
Cell Death Dis ; 14(12): 795, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052787

RESUMO

Primary cilia are microtubule-based organelles that play important roles in development and tissue homeostasis. Macrophage migration inhibitory factor (MIF) has long been recognized as a secreted cytokine in the pathogenesis of various human diseases, including cancer and autosomal dominant polycystic kidney disease (ADPKD). Unlike other cytokines, unique functional characteristics of intracellular MIF have emerged. In this study, we show that MIF is localized and formed a ring like structure at the proximal end of centrioles, where it regulates cilia biogenesis through affecting 1) the recruitment of TTBK2 to basal body and the removal of CP110 from mother centriole, 2) the accumulation of CEP290 at centriolar satellites, and 3) the trafficking of intraflagellar transport (IFT) related proteins. We also show that MIF functions as a novel transcriptional factor to regulate the expression of genes related to ciliogenesis via binding on the promotors of those genes. MIF also binds chromatin and regulates transcription of genes involved in diverse homeostatic signaling pathways. We identify phosphatidylinositol-5-phosphate 4-kinase type 2 alpha (PIP4K2a) as an upstream regulator of MIF, which interacts with and phosphorylates MIF at S91 to increase its interaction with 14-3-3ζ, resulting in its nuclear translocation and transcription regulation. This study suggests that MIF is a key player in cilia biogenesis and a novel transcriptional regulator in homeostasis, which forward our understanding of how MIF is able to carry out several nonoverlapping functions.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Humanos , Fosforilação , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Cílios/metabolismo , Fosfatos/metabolismo , Proteínas 14-3-3/metabolismo , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo
20.
Transl Cancer Res ; 12(10): 2706-2716, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37969402

RESUMO

Background: With the advancements in the fields of science, technology, and medical therapy, there is an increasing awareness among the general public regarding tumor-infiltrating immune cells. These immune cells have a close association with the prognosis of clinical patients with lung cancer. Methods: The research used a comprehensive analysis and assessed tumor-infiltrating immune cells in advanced lung squamous cell carcinoma (LUSC) using The Cancer Genome Atlas (TCGA) database and the CIBERSORT algorithm. The research examined 22 types of tumor-infiltrating immune cells and observed notable differences in the infiltration patterns of immune cells between normal tissue and advanced LUSC. Results: Univariate Cox regression analyses revealed a positive correlation between macrophages M2 and patient prognoses, as well as potential influences on patient prognosis by natural killer (NK) cells resting, monocytes, and activated mast cells. Multivariate Cox regression models were developed, incorporating three types of immune cells. The efficacy of the model was evaluated using a receiver operating characteristic (ROC) curve. Furthermore, the research constructed a nomogram model to individually predict the mortality risk in patients with advanced LUSC. This prediction model serves as a valuable tool for clinicians, enabling them to provide effective guidance based on tumor-infiltrating immune cells for advanced LUSC patients. Conclusions: The research comprehensively analyzed and evaluated 22 types of tumor-infiltrating immune cells from advanced LUSC, revealing the correlation between immune cell infiltration and overall survival (OS) in clinical patients. Based on the nomogram of NK cells resting, monocytes, and macrophages M2, it can make specific prognostic predictions for advanced LUSC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...