Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39062629

RESUMO

The epidermal cells of insects are polarized epithelial cells that play a pivotal role in the insect's molting process. Sinuous, a pivotal structural protein involved in the formation of septate junctions among epithelial cells, is essential for its physiological function. In this study, to determine whether sinuous participates in the regulation of insect molting, we identified the sinuous gene, Lmsinu, in Locusta migratoria, which encodes a protein belonging to the claudin family and shares 62.6% identity with Drosophila's sinuous protein. Lmsinu is expressed in multiple tissues, and its expression level in the integument significantly increases prior to molting. Knockdown of Lmsinu in L. migratoria results in larval mortality during molting. Furthermore, hematoxylin and eosin and chitin staining demonstrate that the downregulation of Lmsinu led to a prolonged degradation process of the old cuticle during the molting process. Electron microscopy analysis further revealed that knockdown of Lmsinu disrupts the formation of septate junctions among epidermal cells, which are a monolayer of polarized epithelial cells, which may hinder the functionality of epidermal cells during the process of molting. In summary, these findings suggest that Lmsinu plays a role in nymph molting by regulating the formation of septate junctions among epidermal cells.


Assuntos
Claudinas , Proteínas de Insetos , Locusta migratoria , Muda , Animais , Muda/genética , Locusta migratoria/genética , Locusta migratoria/metabolismo , Locusta migratoria/crescimento & desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Claudinas/genética , Claudinas/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
2.
Insect Sci ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075757

RESUMO

Syntaxin 1A (Syx1A) has diverse and indispensable functions in animals. Previous studies have mainly focused on the roles of Syx1A in Drosophila, and so how Syx1A operates during the development of other insects remains poorly understood. This study investigated whether disrupting LmSyx1A using RNA interference (RNAi) affects the growth and development of Locusta migratoria. LmSyx1A was expressed in all tissues tested, with the highest expression observed in the fat body. After 5th-instar nymphs were injected with double-stranded LmSyx1A (dsLmSyx1A), none of the nymphs were able to molt normally and all eventually died. The silencing of LmSyx1A resulted in the cessation of feeding, body weight loss, and atrophy of the midgut and gastric cecum in locusts. Hematoxylin and eosin (H&E) staining showed that the columnar cells in the midgut were severely damaged, with microvilli defects visible in dsLmSyx1A-injected nymphs. Secretory vesicles were observed with transmission electron microscopy (TEM). In addition, reverse transcription quantitative polymerase chain reaction (RT-qPCR) further indicates that silencing LmSyx1A repressed the expression of genes involved in the insulin/mammalian target of rapamycin (mTOR)-associated nutritional pathway. Taken together, these results suggest that LmSyx1A significantly affects the midgut cell layer of locust nymphs, which was partially associated with the downregulation of the insulin/mTOR-associated nutritional pathway. Thus, we argue that LmSyx1A is a suitable target for developing dsRNA-based biological pesticides for managing L. migratoria.

3.
Cells ; 13(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39056781

RESUMO

Glypicans are closely associated with organ development and tumorigenesis in animals. Dally-like (Dlp), a membrane-bound glypican, plays pivotal roles in various biological processes in Drosophila. In this study, we observed that an excess of Dlp led to the malformation of legs, particularly affecting the distal part. Accordingly, the leg disc was shrunken and frequently exhibited aberrant morphology. In addition, elevated Dlp levels induced ectopic cell death with no apparent cell proliferation changes. Furthermore, Dlp overexpression in the posterior compartment significantly altered Wingless (Wg) distribution. We observed a marked expansion of Wg distribution within the posterior compartment, accompanied by a corresponding decrease in the anterior compartment. It appears that excess Dlp guides Wg to diffuse to cells with higher Dlp levels. In addition, the distal-less (dll) gene, which is crucial for leg patterning, was up-regulated significantly. Notably, dachshund (dac) and homothorax (hth) expression, also essential for leg patterning and development, only appeared to be negligibly affected. Based on these findings, we speculate that excess Dlp may contribute to malformations of the distal leg region of Drosophila, possibly through its influence on Wg distribution, dll expression and induced cell death. Our research advances the understanding of Dlp function in Drosophila leg development.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Extremidades/patologia , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética
4.
Pestic Biochem Physiol ; 202: 105934, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879326

RESUMO

Syntaxin5 (Syx5) belongs to SNAREs family, which play important roles in fusion of vesicles to target membranes. Most of what we know about functions of Syx5 originates from studies in fungal or vertebrate cells, how Syx5 operates during the development of insects is poorly understood. In this study, we investigated the role of LmSyx5 in the gut development of the hemimetabolous insect Locusta migratoria. LmSyx5 was expressed in many tissues, with higher levels in the gut. Knockdown of LmSyx5 by RNA interference (RNAi) considerably suppressed feeding in both nymphs and adults. The dsLmSyx5-injected locusts lost body weight and finally died at a mortality of 100%. Furthermore, hematoxylin-eosin staining indicated that the midgut is deformed in dsLmSyx5-treated nymphs and the brush border in midgut epithelial cells is severely damaged, suggesting that LmSyx5 is involved in morphogenesis of the midgut. TEM further showed that the endoplasmic reticulum of midgut cells have a bloated appearance. Taken together, these results suggest that LmSyx5 is essential for midgut epithelial homeostsis that affects growth and development of L. migratoria. Thus, Syx5 is a promising RNAi target for controlling L. migratoria, and even other pests.


Assuntos
Comportamento Alimentar , Proteínas de Insetos , Mucosa Intestinal , Locusta migratoria , Proteínas Qa-SNARE , Locusta migratoria/genética , Locusta migratoria/crescimento & desenvolvimento , Locusta migratoria/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Mucosa Intestinal/crescimento & desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Comportamento Alimentar/fisiologia , Técnicas de Silenciamento de Genes , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , Peso Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento
5.
Insects ; 15(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667367

RESUMO

Fushi-tarazu factor 1 (FTZ-F1) is a class of transcription factors belonging to the nuclear receptor superfamily and an important molting regulator in insects; however, its detailed function in the molting process of Locusta migratoria is still unclear. This study identified two FTZ-F1 transcripts (LmFTZ-F1-X1 and LmFTZ-F1-X2) in L. migratoria. The classical domains of FTZ-F1 were present in their protein sequences and distinguished based on their variable N-terminal domains. Reverse-transcription quantitative polymerase chain reaction analysis revealed that LmFTZ-F1-X1 and LmFTZ-F1-X2 were highly expressed in the integument. RNA interference (RNAi) was used to explore the function of LmFTZ-F1s in the molting of the third-instar nymph. Separate LmFTZ-F1-X1 or LmFTZ-F1-X2 silencing did not affect the normal development of third-instar nymphs; however, the simultaneous RNAi of LmFTZ-F1-X1 and LmFTZ-F1-X2 caused the nymphs to be trapped in the third instar stage and finally die. Furthermore, the hematoxylin-eosin and chitin staining of the cuticle showed that the new cuticles were thickened after silencing the LmFTZ-F1s compared to the controls. RNA-seq analysis showed that genes encoding four cuticle proteins, two chitin synthesis enzymes, and cytochrome P450 303a1 were differentially expressed between dsGFP- and dsLmFTZ-F1s-injected groups. Taken together, LmFTZ-F1-X1 and LmFTZ-F1-X2 are involved in the ecdysis of locusts, possibly by regulating the expression of genes involved in cuticle formation, chitin synthesis, and other key molting processes.

6.
Pestic Biochem Physiol ; 201: 105860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685214

RESUMO

The Osiris gene family is believed to play important roles in insect biology. Previous studies mainly focused on the roles of Osiris in Drorophila, how Osiris operates during the development of other species remains largely unknown. Here, we investigated the role of LmOsi17 in development of the hemimetabolous insect Locusta migratoria. LmOsi17 was highly expressed in the intestinal tract of nymphs. Knockdown of LmOsi17 by RNA interference (RNAi) in nymphs resulted in growth defects. The dsLmOsi17-injected nymphs did not increase in body weight or size and eventually died. Immunohistochemical analysis showed that LmOsi17 was localized to the epithelial cells of the foregut and the gastric caecum. Histological observation and hematoxylin-eosin staining indicate that the foregut and gastric caecum are deformed in dsLmOsi17 treated nymphs, suggesting that LmOsi17 is involved in morphogenesis of foregut and gastric caecum. In addition, we observed a significant reduction in the thickness of the new cuticle in dsLmOsi17-injected nymphs compared to control nymphs. Taken together, these results suggest that LmOsi17 contributes to morphogenesis of intestinal tract that affects growth and development of nymphs in locusts.


Assuntos
Proteínas de Insetos , Locusta migratoria , Morfogênese , Ninfa , Animais , Locusta migratoria/crescimento & desenvolvimento , Locusta migratoria/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Ninfa/crescimento & desenvolvimento , Interferência de RNA , Intestinos
7.
Huan Jing Ke Xue ; 45(3): 1665-1673, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471878

RESUMO

Changes in soil nitrogen components in tea gardens affect the soil nitrogen supply capacity and nitrogen cycle. In this study, soil samples were collected from forest land, cultivated land, and tea gardens with different plantation ages (30, 50, and 70 years) to explore the changes in soil nitrogen components and their relationship with physicochemical properties and enzyme activities. The results showed that:① with the increase in tea plantation age, the silt, total phosphorus, and urease and catalase activities gradually increased, whereas the sand, clay, pH, electrical conductivity, soil organic carbon, and the activities of invertase gradually decreased. The alkaline phosphatase activity increased first and then decreased with the increase in tea plantation age, and no significant differences were observed in soil water content and acid phosphatase activity. ② With the increase in tea plantation age, the contents of acid ammonia nitrogen, amino acid nitrogen, and nitrate nitrogen (NO3--N) increased significantly, and the contents of total nitrogen, acid ammonia nitrogen, hydrolyzable unknown nitrogen, and non-hydrolyzable nitrogen in tea gardens were significantly higher than those in forest land. ③ The total phosphorus, alkaline phosphatase, and urease were the main factors affecting soil nitrogen components. Among them, organic nitrogen components were significantly correlated with total phosphorus and alkaline phosphatase, and inorganic nitrogen components were significantly correlated with alkaline phosphatase, whereas total nitrogen had significant correlations with sand, silt, total phosphorus, urease, and alkaline phosphatase.


Assuntos
Fosfatase Alcalina , Solo , Solo/química , Areia , Nitrogênio/análise , Carbono , Urease , Amônia , Fósforo/análise , Chá , Microbiologia do Solo , China
8.
Insect Sci ; 31(3): 748-758, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38445520

RESUMO

Lipid homeostasis is crucial for growth and development of organisms. Several cytochrome P450 monooxygenases (CYPs) are involved in lipid metabolism. The function of Cyp311a1 in the anterior midgut as a regulator of phosphatidylethanolamine (PE) metabolism in Drosophila melanogaster has been demonstrated, as depletion of Cyp311a1 caused larval growth arrest that was partially rescued by supplying PE. In this study, we investigated the role of CYP311A1 in wing morphogenesis in Drosophila. Using the GAL4-UAS system, Cyp311a1 was selectively knocked down in the wing disc. A deformed wing phenotype was observed in flies with reduced Cyp311a1 transcripts. BODIPY and oil red O staining revealed a reduction of neutral lipids in the wing disc after the depletion of Cyp311a1. In addition, we observed an enhanced sensitivity to Eosin Y penetration in the wings of Cyp311a1 knocked-down flies. Moreover, the reduction of CYP311A1 function in developing wings does not affect cell proliferation and apoptosis, but entails disordered Phalloidin or Cadherin distribution, suggesting an abnormal cell morphology and cell cortex structure in wing epithelial cells. Taken together, our results suggest that Cyp311a1 is needed for wing morphogenesis by participating in lipid assembly and cell homeostasis.


Assuntos
Sistema Enzimático do Citocromo P-450 , Proteínas de Drosophila , Drosophila melanogaster , Asas de Animais , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Morfogênese , Larva/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo , Metabolismo dos Lipídeos
9.
Int J Biol Macromol ; 266(Pt 2): 131137, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537854

RESUMO

The coat protein II (COPII) complex consists of five primary soluble proteins, namely the small GTP-binding protein Sar1, the inner coat Sec23/Sec24 heterodimers, and the outer coat Sec13/Sec31 heterotetramers. COPII is essential for cellular protein and lipid trafficking through cargo sorting and vesicle formation at the endoplasmic reticulum. However, the roles of COPII assembly genes remain unknown in insects. In present study, we identified five COPII assembly genes (LmSar1, LmSec23, LmSec24, LmSec13 and LmSec31) in Locusta migratoria. RT-qPCR results revealed that these genes showed different expression patterns in multiple tissues and developmental days of fifth-instar nymphs. Injection of double-stranded RNA against each LmCOPII gene induced a high RNAi efficiency, and considerably suppressed feeding, and increased mortality to 100 %. Results from the micro-sectioning and hematoxylin-eosin staining of midguts showed that the brush border was severely damaged and the number of columnar cells was significantly reduced in dsLmCOPII-injected nymphs, as compared with the control. The dilated endoplasmic reticulum phenotype of columnar cells was observed by transmission electron microscopy. RT-qPCR results further indicated that silencing any of the five genes responsible for COPII complex assembly repressed the expression of genes involved in insulin/mTOR-associated nutritional pathway. Therefore, COPII assembly genes could be promising RNAi targets for insect pest management by disrupting gut and cuticle development.


Assuntos
Sistema Digestório , Trato Gastrointestinal , Locusta migratoria , Proteínas Monoméricas de Ligação ao GTP , Controle Biológico de Vetores , Interferência de RNA , Proteínas de Transporte Vesicular , Animais , Sistema Digestório/crescimento & desenvolvimento , Retículo Endoplasmático , Técnicas de Silenciamento de Genes , Homeostase , Locusta migratoria/genética , Locusta migratoria/crescimento & desenvolvimento , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Controle Biológico de Vetores/métodos , Multimerização Proteica , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Masculino , Feminino , Trato Gastrointestinal/crescimento & desenvolvimento
10.
Insect Biochem Mol Biol ; 168: 104114, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552809

RESUMO

The Drosophila hindgut is a classical model to study organogenesis. The adult hindgut originates from the precursor cells in the larval hindgut. However, the territory of these cells has still not been well determined. A ring of wingless (wg)-expressing cells lies at the anterior zone of both the larval and adult hindgut. The larval Wg ring was thought as a portion of precursor of the adult hindgut. By applying a cell lineage tracing tool (G-TRACE), we demonstrate that larval wg-expressing cells have no cell lineage contribution to the adult hindgut. Additionally, adult Wg ring cells do not divide and move posteriorly to replenish the hindgut tissue. Instead, we determine that the precursors of the adult pylorus and ileum are situated in the cubitus interruptus (ci)-expressing cells in the anterior zone, and deduce that the precursor stem cells of the adult rectum locate in the trunk region of the larval pylorus including hedgehog (hh)-expressing cells. Together, this research advances our understanding of cell lineage origins and the development of the Drosophila hindgut.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Larva/genética , Larva/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteína Wnt1 , Proteínas Hedgehog/genética , Regulação da Expressão Gênica no Desenvolvimento
11.
Int J Biol Macromol ; 263(Pt 2): 130245, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367779

RESUMO

The dynamic adhesion between cells and their extracellular matrix is essential for the development and function of organs. During insect wing development, two epithelial sheets contact each other at their basal sites through the interaction of ßPS integrins with the extracellular matrix. We report that Osiris17 contributes to the maintenance of ßPS integrins localization and function in developing wing of Drosophila and locust. In flies with reduced Osiris17 expression the epithelia sheets fail to maintain the integrity of basal cytoplasmic junctional bridges and basal adhesion. In contrast to the continuous basal integrin localization in control wings, this localization is disrupted during late stages of wing development in Osiris17 depleted flies. In addition, the subcellular localization revealed that Osiris17 co-localizes with the endosomal markers Rab5 and Rab11. This observation suggests an involvement of Osiris17 in endosomal recycling of integrins. Indeed, Osiris17 depletion reduced the numbers of Rab5 and Rab11 positive endosomes. Moreover, overexpression of Osiris17 increased co-localization of Rab5 and ßPS integrins and partially rescued the detachment phenotype in flies with reduced ßPS integrins. Taken together, our data suggest that Osiris17 is an endosome related protein that contributes to epithelial remodeling and morphogenesis by assisting basal integrins localization in insects.


Assuntos
Proteínas de Drosophila , Integrinas , Animais , Integrinas/metabolismo , Drosophila/genética , Epitélio/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Matriz Extracelular/metabolismo
12.
Huan Jing Ke Xue ; 45(1): 386-395, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216488

RESUMO

Spatial prediction of the concentrations of soil heavy metals (HMs) in cultivated land is critical for monitoring cultivated land contamination and ensuring sustainable eco-agriculture. In this study, 32 environmental variables from terrain, climate, soil attributes, remote-sensing information, vegetation indices, and anthropogenic activities were used as auxiliary variables, and random forest (RF), regression Kriging (RK), ordinary Kriging (OK), and multiple linear regression (MLR) models were proposed to predict the concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in cultivated soils. In comparison to those of RK, OK, and MLR, the RF model had the best prediction performance for As, Cd, Cr, Hg, Pb, and Zn, whereas the OK and RK models had highest prediction performance for Cu and Ni, respectively, showing that R2 was the highest, and mean absolute error (MAE) and root mean square error (RMSE) were the lowest. The prediction performance of the spatial distribution of soil HMs under different prediction methods was basically consistent. The high value areas of eight HMs concentrations were all distributed in the southern plain area. However, the RF model depicted the details of spatial prediction more prominently. Moreover, the importance ranking of influencing factors derived from the RF model indicated that the spatial variation in concentrations of the eight HMs in Lanxi City were mainly affected by the combined effects of Se, TN, pH, elevation, annual average temperature, annual average rainfall, distance from rivers, and distance from factories. Given the above, random forest models could be used as an effective method for the spatial prediction of soil heavy metals, providing scientific reference for regional soil pollution investigation, assessment, and management.

13.
Insect Sci ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214184

RESUMO

The foregut, located at the front of the digestive tract, serves a vital role in insects by storing and grinding food into small particles. The innermost layer of the foregut known as the chitinous intima, comes into direct contact with the food and acts as a protective barrier against abrasive particles. Knickkopf (Knk) is required for chitin organization in the chitinous exoskeleton, tracheae and wings. Despite its significance, little is known about the biological function of Knk in the foregut. In this study, we found that LmKnk was stably expressed in the foregut, and highly expressed before molting in Locusta migratoria. To ascertain the biological function of LmKnk in the foregut, we synthesized specific double-stranded LmKnk (dsLmKnk) and injected it into locusts. Our findings showed a significant decrease in the foregut size, along with reduced food intake and accumulation of residues in the foregut after dsLmKnk injection. Morphological observations revealed that newly formed intima became thinner and lacked chitin lamella. Furthermore, fluorescence immunohistochemistry revealed that LmKnk was located in the apical region of new intima and epithelial cells. Taken together, this study provides insights into the biological function of LmKnk in the foregut, and identifies the potential target gene for exploring biological pest management strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...