RESUMO
With the rapidly aging human population, age-related cognitive decline and dementia are becoming increasingly prevalent worldwide. Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota, microbial metabolites, and the functions of astrocytes. The microbiota-gut-brain axis has been the focus of multiple studies and is closely associated with cognitive function. This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases. This article also summarizes the gut microbiota components that affect astrocyte function, mainly through the vagus nerve, immune responses, circadian rhythms, and microbial metabolites. Finally, this article summarizes the mechanism by which the gut microbiota-astrocyte axis plays a role in Alzheimer's and Parkinson's diseases. Our findings have revealed the critical role of the microbiota-astrocyte axis in age-related cognitive decline, aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.
RESUMO
BACKGROUND: Type 2 diabetes mellitus (T2DM) is a serious metabolic syndrome with high mortality and disability rates globally, which usually caused by unhealthy dietary patterns. Cinnamomum camphora leaf is a traditional Chinese medicinal herb used for attenuating hyperglycemia and digestive disorder, and high level of lignans has been found in C. camphora leaf. PURPOSE: This study aimed to examine the chemical composition of lignans extracted from C. camphora leaf (LCCL), and illustrate its therapeutic effect and mechanism on T2DM and its concomitant glycolipid metabolic disorder. METHODS: The components of LCCL were separated and purified by silica gel and macroporous adsorption resin, and were distinguished through LC/MS and NMR. The antioxidant activity of LCCL was determined by free radical scavenging assay in vitro; the hypoglycemic and hypolipidemic abilities were evaluated by α-glucosidase, α-amylase and pancreatic lipase inhibition trials, respectively. T2DM model mice were established by high-sugar and high-fat (HSHF) feed together with streptozotocin (STZ) infection, and then grouped to assess the effect of LCCL treatment. Hematoxylin-eosin (H&E), Periodic Acid-Schiff (PAS) and oil red O staining were employed to analyze the histopathology. qRT-PCR assay, 16S rRNA analysis, and western blot were conducted to illuminate the anti-diabetic mechanism of LCCL. RESULTS: 6 sesamin lignans were identifed from LCCL. The in vitro assays showed strong inhibitive abilities of LCCL with low IC50 on DPPH (33.68 ± 0.54 µg/ml),O2- (39.25 ± 0.61 µg/ml), OH⢠(45.72 ± 0.72 µg/ml), α-glucosidase (0.82 ± 0.14 mg/ml), α-amylase (0.86 ± 0.11 mg/ml) and pancreatic lipase (0.91 ± 0.12 mg/ml). LCCL treatment (100, 200 and 400 g kg-1mg kg-1) gradually decreased the fasting blood glucose (FBG) and fasting insulin (FINS), improved the glucose and insulin tolerance, down-regulated the homeostasis model assessment insulin resistance (HOMA-IR) indexes, alleviated the hepatic inflammatory response and oxidative stress, promoted the glycogen storage and depleted the fat accumulation in the liver. Besides, LCCL administration alleviated the glycolipid metabolism disorder in T2DM mice with a gut microbiota dependent manner, that significantly increased biodiversity, altered the composition of gut microbiota and increased the proportion of Lactobacillus. CONCLUSION: The lignan-rich extract of C. camphor leaf (LCCL), containing at least 6 lignans compounds, displayed promising antioxidant, hypoglycemic and hypolipidemic activities. The treatment of LCCL alleviated the glycolipid metabolism disorder in T2DM mice with a gut microbiota dependent manner. These finding suggested that LCCL should be further investigated to develop its complementary therapeutic effect on T2DM.
RESUMO
The rapid digestion of starch, as the main source of energy in the human diet, causes an acute increase in blood sugar levels that will affect blood glucose homeostasis. The inhibition of α-amylase activity is an effective way of reducing starch digestibility, thereby controlling postprandial glycemia. As a class of carbohydrate polymers, microbial exopolysaccharides (EPSs) have garnered widespread attention for their inhibitory effects on α-amylase, but there is a lack of comprehensive review in this area. This paper aimed to review the inhibitory activity of microbial EPSs on α-amylase and their interaction mechanisms, and the effect of microbial EPSs on lowering blood glucose levels and regulating glycolipid metabolism in vivo were also discussed. Numerous studies have reported that EPSs with α-amylase inhibition activity are primarily produced by lactic acid bacteria. Microbial EPSs with an appropriate range of molecular weight, high proportion of glucose or mannose or arabinose residues, and high uronic acid content might be acceptable to inhibit α-amylase activity. Additionally, microbial EPSs exhibited potential anti-diabetic effects in mice, reducing blood glucose levels, and regulating glycolipid metabolism and gut microbiota. The information covered in this review may enhance the development and application of EPSs in functional food and pharmaceutical research.
RESUMO
A compact, multi-channel ionic liquid-gated graphene field-effect transistor (FET) has been proposed and developed in our work for on-field continuous monitoring of nitrate nitrogen and other nitrogen fertilizers to achieve sustainable and efficient farming practices in agriculture. However, fabricating graphene FETs with easy filling of ionic liquids, minimal graphene defects, and high process yields remains challenging, given the sensitivity of these devices to processing conditions and environmental factors. In this work, two approaches for the fabrication of our graphene FETs were presented, evaluated, and compared for high yields and easy filling of ionic liquids. The process difficulties, major obstacles, and improvements are discussed herein in detail. Both devices, those fabricated using a 3 µm-thick CYTOP® layer for position restriction and volume control of the ionic liquid and those using a ~20 nm-thick photosensitive hydrophobic layer for the same purpose, exhibited typical FET characteristics and were applicable to various application environments. The research findings and experiences presented in this paper will provide important references to related societies for the design, fabrication, and application of liquid-gated graphene FETs.
RESUMO
Gold nanoparticles (AuNPs) in different shapes have been developed and investigated for the treatment of various diseases. However, the potential toxicological vulnerability of different organs to morphologies of AuNPs and the complication of the toxicological profile of AuNPs by other health risk factors (e.g., plastic particles) have rarely been investigated systematically. Therefore, in this study, we aimed to investigate the toxicological differences between the spherical and triangular AuNPs (denoted as AuS and AuT, respectively) and the toxicological modulations by micro- or nanosized polystyrene plastic particles (denoted as mPS and nPS, respectively) in mice. Systemic biochemical characterizations were performed after a 90 day oral gavage feeding to obtain toxicological comparisons in different organs. In the case of single exposure to gold nanoparticles, AuT was associated with significantly higher aspartate amino-transferase (168.2%, P < 0.05), superoxide dismutase (183.6%, P < 0.001), catalase (136.9%, P < 0.01), total cholesterol (132.6%, P < 0.01), high-density lipoprotein cholesterol (131.3%, P < 0.05), and low-density lipoprotein cholesterol (204.6%, P < 0.01) levels than AuS. In contrast, AuS was associated with a significantly higher nitric oxide level (355.1%, P < 0.01) than AuT. Considering the overall toxicological profiles in single exposure and coexposure with multiscale plastics, it has been found that AuS is associated with lower hepatotoxicity and lipid metabolism malfunction, and AuT is associated with lower neurotoxicity than AuS. This finding may facilitate the future therapeutic design by considering the priority in protections of different organs and utilizing appropriate material morphologies.
RESUMO
BACKGROUND: Haematological patients with severe thrombocytopenia and high thrombotic risk face challenges related to balancing bleeding and thrombosis risks. This study investigated factors associated with bleeding and thrombosis in high-risk haematological oncology patients with severe thrombocytopenia not receiving anticoagulant therapy and characterized their clinical features when both events occurred. METHODS: A total of 446 haematological oncology patients with Caprini scores ≥ 5 were included from July 2022 to June 2023 at Mianyang City Central Hospital. Those not receiving prophylactic anticoagulants due to an admission platelet count < 50 × 109/L were studied. Patients were categorized into bleeding/nonbleeding and thrombotic/nonthrombotic groups on the basis of hospital course. Relevant clinical data were collected, and univariate/multivariate logistic regression was used to analyse the influencing factors. The platelet count at admission was assessed via ROC curves for thrombosis prediction. RESULTS: In the bleeding group, higher proportions of patients with leukaemia, myeloid tumours, lung infections, and a central venous catheter (CVC) with two lumens were observed, along with shorter catheter durations, lower initial and minimum platelet counts during hospitalization, and prolonged plasminogen times (all P < 0.05). The thrombotic group had a greater thrombosis history, initial platelet count, use of two venous catheter lumens, parenteral nutrition, sedation, and autologous haematopoietic stem cell transplantation (Auto-HSCT), with a lower leukaemia proportion (P < 0.05). Logistic regression identified lymphoma type and minimum platelet count as bleeding protective factors and the Charlson Comorbidity Index (CCI) score as an independent risk factor. Thrombosis history, two venous catheter lumens, and sedation were risk factors for thrombosis. The median platelet count was lower at bleeding and thrombosis than at admission (P = 0.007). The platelet count at admission had predictive value for thrombosis, especially severe thrombocytopenia, with an AUC of 0.735 (95% CI 0.613-0.858, P = 0.003) and a cut-off value of 42.5 × 109/L. CONCLUSIONS: For haematological neoplasm patients with a high risk of venous thromboembolism (VTE), severe thrombocytopenia and high CCI scores, risk prevention and control of bleeding take precedence over thrombosis prophylaxis. Prophylactic anticoagulation is still recommended for patients with lymphoma assessed at high risk for VTE and with platelet counts of at least 42.5 × 109/L.
Assuntos
Neoplasias Hematológicas , Hemorragia , Trombocitopenia , Trombose , Humanos , Trombocitopenia/complicações , Trombocitopenia/etiologia , Masculino , Feminino , Pessoa de Meia-Idade , Trombose/etiologia , Hemorragia/etiologia , Fatores de Risco , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/terapia , Contagem de Plaquetas , Idoso , Adulto , Estudos RetrospectivosRESUMO
Covalent organic framework (COF) film-based solid-phase extraction (F-SPE) has garnered great attention in sample pretreatment. However, harsh synthesis conditions of COF films have severely hindered their potential applications. In this study, a kind of COF (TPB-DMTP) films were fabricated via a liquid-liquid interfacial synthesis method at a mild condition. The obtained films exhibited excellent extraction performance towards microcystins (MCs, an algal toxin) due to their porous structure, high specific surface area and abundant accessible adsorption sites. Coupled TPB-DMTP films-based F-SPE with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), a sensitive and environment-friendly analytical method was established for MCs detection. Under the optimal conditions, this method possessed wide linear ranges (2.0-800.0 pg mL-1) with good linearity (R ≥ 0.9991), low limits of detection (0.8-3.0 pg mL-1) and satisfactory precision (RSDs ≤7.1 %), which then successfully applied for MCs detection in actual aquatic organism samples. Trace amounts of MC-RR (42.4 pg mL-1) and MC-YR (14.6 pg mL-1) were detected in the mussels. The results demonstrate the excellent application potential of COF films in sample pretreatment.
RESUMO
PURPOSE: To develop a novel MRI-based vector radiomic approach to predict breast cancer (BC) human epidermal growth factor receptor 2 (HER2) status (zero, low, and positive; task 1) and its changes after neoadjuvant therapy (NAT) (positive-to-positive, positive-to-negative, and positive-to-pathologic complete response; task 2). MATERIALS AND METHODS: Both dynamic contrast-enhanced (DCE) MRI data and multi-b-value (MBV) diffusion-weighted imaging (DWI) data were acquired in BC patients at two centers. Vector-radiomic and conventional-radiomic features were extracted from both DCE-MRI and MBV-DWI. After feature selection, the following models were built using the retained features and logistic regression: vector model, conventional model, and combined model that integrates the vector-radiomic and conventional-radiomic features. The models' performances were quantified by the area under the receiver-operating characteristic curve (AUC). RESULTS: The training/external test set (center 1/2) included 483/361 women. For task 1, the vector model (AUCs=0.73â¼0.86) was superior to (p<.05) the conventional model (AUCs=0.68â¼0.81), and the addition of vector-radiomic features to conventional-radiomic features yielded an incremental predictive value (AUCs=0.80â¼0.90, p<.05). For task 2, the combined MBV-DWI model (AUCs=0.85â¼0.89) performed better than (p<.05) the conventional MBV-DWI model (AUCs=0.73â¼0.82). In addition, for the combined DCE-MRI model and the combined MBV-DWI model, the former (AUCs=0.85â¼0.90) outperformed (p<.05) the latter (AUCs=0.80â¼0.85) in task 1, whereas the latter (AUCs=0.85â¼0.89) outperformed (p<.05) the former (AUCs=0.76â¼0.81) in task 2. The above results are true for the training and external test sets. CONCLUSIONS: MRI-based vector radiomics may predict BC HER2 status and its changes after NAT and provide significant incremental prediction over and above conventional radiomics.
RESUMO
The insufficient capabilities of current surface-enhanced Raman scattering (SERS) substrates in enriching dilute analytes from complex media severely restrict detection sensitivity, hampering practical applications. To meet this demand, in this study, a novel super hydrophobic membrane that can be directly prepared on a large scale based on the silver nanoparticles (AgNPs) functioning with perfluorodecanethiol (PFDT) is fabricated and evaluated as an SERS substrate. Firstly, polyester (PET) films modified with sodium chloride were proven to be capable of loading AgNPs, and the sizes of AgNPs were investigated. In addition, the PFDT concentration and reaction time for functionalizing the surface of AgNPs have been optimized. The relationship between the hydrophobic properties of the film and its SERS performance was then studied. The PET@Ag-PFDT film demonstrates two orders of magnitude superior SERS performance than the unmodified PET@Ag substrate, with a detection limit of folic acid approaching 5 × 10-10 M.
RESUMO
Efficient, stable, and low-cost oxygen reduction catalysts are the key to the large-scale application of metal-air batteries. Herein, high-dispersive Fe2O3 nanoparticles (NPs) with abundant oxygen vacancies uniformly are anchored on lignin-derived metal-nitrogen-carbon (M-N-C) hierarchical porous nanosheets as efficient oxygen reduction reaction (ORR) catalysts (Fe2O3/M-N-C, MâCu, Mn, W, Mo) based on a general and economical KCl molten salt-assisted method. The combination of Fe with the highly electronegative O induces charge redistribution through the Fe-O-M structure, thereby reducing the adsorption energy of oxygen-containing substances. The coupling effect of Fe2O3 NPs with M-N-C expedites the catalytic activity toward ORR by promoting proton generation on Fe2O3 and transfer to M-N-C. Experimental and theoretical calculation further revealed the remarkable electronic structure evolution of the metal site during the ORR process, where the emission density and local magnetic moment of the metal atoms change continuously throughout their reaction. The unique layered porous structure and highly active M-N4 sites resulted in the excellent ORR activity of Fe2O3/Cu-N-C with the onset potential of 0.977 V, which is superior to Pt/C. This study offers a feasible strategy for the preparation of non-noble metal catalysts and provides a new comprehension of the catalytic mechanism of M-N-C catalysts.
RESUMO
Imbalances in gut microbiota diversity are associated with various health issues, including obesity and related disorders. There is a growing interest in developing synergistic biopolymers based on wolfberry polysaccharides and whey protein to address these problems due to their potential health benefits. This review explores recent advances in understanding how functional foods based on Lycium barbarum polysaccharides (LBP) and whey protein (WP) influence gut microbiota diversity and their underlying mechanisms. We examine the impact of these biopolymers on microbial composition and functionality, focusing on their roles in improving health by regulating gut microbiota. The combined effects of WP and LBP significantly enhance gut microbiome metabolic activities and taxonomic diversity, offering promising avenues for treating obesity and related disorders.
RESUMO
The urological system, including kidneys, ureters, bladder, urethra and prostate is known to be vital for blood filtration, waste elimination and electrolyte balance. Notably, urological system cancers represent a significant portion of global cancer diagnoses and mortalities. The current therapeutic strategies for early-stage cancer primarily involve resection surgery, which significantly affects the quality of life of patients, whereas advanced-stage cancer often relies on less effective chemo- or radiotherapy. Recently, accumulating evidence has revealed that autophagy, a crucial process in which excess organelles or inclusions within cells are removed to maintain cell homeostasis, has numerous links to urological system cancers. In this review, we focus on summarizing the underlying two-sided mechanisms of autophagy in urological system cancers. We also review the current clinical drugs targeting autophagy, which demonstrate significant potential in improving treatment outcomes for urological system cancers. In addition, we provide an overview of the research status of novel small molecule compounds targeting autophagy that are in the preclinical stages of investigation. Furthermore, drug combinations based on autophagy modulation strategies in urological system cancers are systematically summarized and discussed. These findings provide comprehensive new insight for the future discovery of more autophagy-related drug candidates.
RESUMO
With the continuous progress of nanotechnology in the field of tumor vaccines, immunotherapy has been regarded as one of the most powerful approaches for cancer treatment. Currently, DNA vaccines are used to efficiently deliver plasmids encoding tumor-associated antigens to antigen-presenting cells (APCs) and enhance the activation of immune cells. In this work, a series of aromatic sulfonyl small-molecule-modified polymers R-P based on low-molecular-weight polyethylenimine (PEI) were prepared, and their structure-activity relationship was studied. Among them, Ns-P with high transfection efficiency and low toxicity was applied to deliver antigen ovalbumin (OVA)-encoded plasmid DNA to APCs for triggering the immune activation of dendritic cells (DCs). It was also found that Ns-P could be used as an immune adjuvant to activate the STING pathway in DCs, integrating innate stimulating activity into the carrier to enhance antitumor immunity. Moreover, the modification of Ns-P/pOVA complexes with oxidized mannan could not only improve the biocompatibility of the complex, but also enhance the uptake of DCs, further inducing OVA antigen presentation and immune stimulation. In vivo antitumor assays indicated that Ns-P/pOVA/Man immunization could inhibit the growth of OVA-expressing E.G7 tumors in C57BL/6 mice. These results demonstrated that Ns-P/pOVA/Man is promising for gene delivery and immunotherapy application.
RESUMO
BACKGROUND: We aimed to determine the potential predictive value of the intra-tumoral microbiome as a marker of the response to external beam radiation therapy (EBRT) in cervical cancer (CC). METHODS: A prospective longitudinal trial of 36 CC patients receiving pelvic radiotherapy was designed to investigate microbial characteristic signatures and diversity (alpha and beta) of multiple sites (tumor, vaginal, gut, urethral, and oral) in the superior response (SR) and inferior response (IR) groups of CC patients by 16S rRNA sequencing. Utilized the least absolute shrinkage and selection operator (LASSO) logistic regression method to analyze clinicopathological factors that potentially influenced the efficacy of EBRT. LEfSe analysis highlighted the microbiome features that best distinguished the categorized patient samples. Selected parameters were validated with Spearman correlation analysis, receiver operating characteristic (ROC) area under the curve (AUC) analysis and Kaplan-Meier survival analysis. RESULTS: Firstly, in our cohort, LASSO logistic regression analysis revealed no association between clinicopathological factors and EBRT efficacy. Subsequently, we employed 16S rRNA sequencing to compare microbiome differences across multiple sites and their correlations with major clinicopathological factors. We discovered that the intra-tumoral microbiome was independent of clinicopathologic features and represented the most direct and reliable reflection of the microbial differences between the SR and IR groups. We found lower alpha diversity in the tumor microbiome of SR group and identified the most relevant microbiome taxa (Bifidobacteriaceae, Beijerinckiaceae, and Orbaceae) associated with the efficacy of the response to EBRT in CC patients. We then conducted ROC analysis, finding that specific microbial taxa had an AUC of 0.831 (95% CI, 0.667-0.995), indicating the potential of these taxa as biomarkers for predicting EBRT efficacy. Kaplan-Meier survival analysis showed a better prognosis for patients with lower alpha diversity and higher relative abundance of Bifidobacteriaceae. CONCLUSIONS: Our data suggested that intra-tumoral specific microbiome taxa and lower alpha diversity may play an important role in the CC patient sensitivity to EBRT and offer novel potential biomarkers for predicting the response to EBRT efficacy.
Assuntos
Microbiota , RNA Ribossômico 16S , Curva ROC , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/microbiologia , Neoplasias do Colo do Útero/patologia , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Resultado do Tratamento , Adulto , Biomarcadores Tumorais/metabolismo , Estimativa de Kaplan-Meier , IdosoRESUMO
Membrane-based micro-solid phase extraction (M-µSPE) has garnered great attention in sample pretreatment, suffering an inherent contradiction between permeability and adsorption capacity. In this study, a pure microporous organic network (TEB-DIB-MON) fiber membrane was prepared by combining electrostatic spinning technology, Sonogashira-Hagihara reaction and template sacrifice method. The prepared TEB-DIB-MON membrane exhibited a large specific surface area with a hollow and porous structure, thereby providing excellent solvent permeability and high adsorption capacity for okadaic acid (OA, an algal toxin). Under the optimized conditions, a sensitive analytical method was established by coupling M-µSPE with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The established method has a low detection limit (0.5 pg mL-1), a wide linear range (1.5-1000 pg mL-1, R ≥ 0.9991), and good reproducibility (RSD ≤ 9.4 %, n = 6), which was then successfully applied for OA detection in marine organisms. Trace amounts of OA (59.3-89.0 pg mL-1) was detected in the oyster and prawn samples. This work demonstrated that the excellent application potential of MON membranes in sample pretreatment, while also presents a novel synthesis strategy for MONs membranes.
Assuntos
Limite de Detecção , Membranas Artificiais , Ácido Okadáico , Espectrometria de Massas em Tandem , Ácido Okadáico/análise , Ácido Okadáico/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Adsorção , Organismos Aquáticos/química , Porosidade , Reprodutibilidade dos Testes , Microextração em Fase Sólida/métodos , Extração em Fase Sólida/métodos , Ostreidae/químicaRESUMO
AIM: To evaluate the efficacy, timing of retreatment and safety of dexamethasone (DEX) implant on macular edema (ME) secondary to diabetic retinopathy (DME) and retinal vein occlusion (RVO-ME) patients who were refractory to anti-vascular endothelial growth factor (VEGF) treatment. METHODS: This retrospective study included 37 eyes received at least one DEX implant treatment for DME or RVO-ME between January 1, 2019, and January 1, 2023. These refractory DME and RVO-ME cases received at least 5 anti-VEGF injections and failure to gain more than 5 letters or a significant reduction in central retinal thickness (CRT). The best corrected visual acuity (BCVA) and CRT were measured at baseline, and at 1, 3, 4 and 6mo post-DEX implant injection. Adverse events such as elevated intraocular pressure (IOP) and cataract were recorded. RESULTS: For RVO cases (n=22), there was a significant increase in BCVA from 0.27±0.19 to 0.35±0.20 at 6mo post-DEX injection (P<0.05) and CRT decreased from 472.1±90.6 to 240.5±39.0 µm at 6mo (P<0.0001). DME cases (n=15) experienced an improvement in BCVA from 0.26±0.15 to 0.43±0.20 at 6mo post-DEX implant injection (P=0.0098), with CRT reducing from 445.7±55.7 to 271.7±34.1 µm at 6mo (P<0.0001). Elevated IOP occurred in 45.9% of patients but was well-controlled with topical medications. No cases of cataract or other adverse events were reported. CONCLUSION: DEX implants effectively improve BCVA and reduce CRT in refractory DME and RVO-ME. Further research with larger cohorts and longer follow-up periods is needed to confirm these findings and assess long-term outcomes.
RESUMO
Multispecies planting is an important approach to deliver ecosystem functions in afforestation projects. However, the importance of species richness vs specific species composition in this context remains unresolved. To estimate species or functional group richness and compositional change between two communities, we calculated nestedness, where one community contains a subset of the species of another, and turnover, where two communities differ in species composition but not in species richness. We evaluated the effects of species/functional group nestedness and turnover on stand productivity using 315 mixed plots from a pool of 40 tree species in a large forest biodiversity experiment in subtropical China. We found that the greater the differences in species or functional group nestedness and turnover, the greater the differences in stand productivity between plots. Additionally, the strong effects of both nestedness and turnover on stand productivity developed over the 11-yr observation period. Our results indicate that selection of specific tree species is as important as planting a large number of species to support the productivity function of forests. Furthermore, the selection of specific tree species should be based on functionality, because beneficial effects of functional group composition were stronger than those of species composition.
RESUMO
Per- and poly-fluoroalkyl substances (PFAS), ubiquitous environmental pollutants, have been reported as possible contributors to human dyslipidemia. However, evidence for emerging PFAS remains scarce. Using a nested case-control study (n = 357) in a middle-aged and elderly population from Beijing, we investigated the serum concentrations of eight traditional and fourteen emerging PFAS and their potential links with dyslipidemia. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were found to be the dominant PFAS. Serum levels of perfluorohexanesulfonic acid (PFHxS) and 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA/F53B) were associated with higher risk of elevated low-density lipoprotein cholesterol (LDL-C) with odds ratios (OR) of 3.88 (95% CI: 1.44-10.51) and 2.71 (95% CI: 1.11-6.57), respectively. These compounds also positively correlated with high total cholesterol (TC). PFOA, perfluorodecanoic acid (PFDA), and 6:2 Fluorotelomer phosphate monoester (6:2 PAP) were linked to increased risk of high triglycerides (TG) with OR of 2.79 (95% CI: 1.30-6.01), 2.41 (95% CI: 1.27-4.60), and 1.53 (95% CI: 1.05-2.22), respectively. Conversely, perfluorooctane sulfonamidoacetic acid (FOSAA) was negatively associated with high TG levels. These findings indicate that both traditional and emerging PFAS may induce dyslipidemia, emphasizing the potentially serious impact of emerging PFAS on human health.
RESUMO
Tungsten (W), a toxic and hazardous pollutant, poses substantial risks to both aquatic life and human health. However, the available understanding of the migration properties of W in lake sediments under various habitats is still limited. This study was designed to evaluate variations in the concentrations of soluble W, manganese (Mn), and iron (Fe) in the summer season by applying a high-resolution Peeper sampling device. According to the results, soluble W concentrations and release fluxes were higher in the pore water of sediments in algae-dominated lake areas than in areas dominated by aquatic plants. This result indicates that the competition for adsorption between algae-derived dissolved organic matter and W, as well as the reductive dissolution caused by dissolved organic matter on Fe (III)/Mn (IV) (hydroxyl) oxides, contributes to the release of W from lake sediments. W uptake by aquatic plants and in-situ formation of Fe (III)/Mn (IV) (hydroxyl) oxides might be the primary factor that controls W release from lake sediments. Aquatic plants can effectively control W release from sediments. The findings of this work provide a scientific basis for the effective control of W release from shallow lake sediments.
RESUMO
BACKGROUND: Limited knowledge exists on the association between polypharmacy among older patients diagnosed with cardiometabolic diseases and the risk of clinical outcomes and healthcare utilization. AIM: This study aimed to estimate the impact of polypharmacy on clinical outcomes and healthcare utilization in older adults with cardiometabolic diseases. METHOD: A retrospective cohort analysis was performed using data from the Beijing Municipal Medical Insurance Database. The study focused on polypharmacy prescribing patterns in community-dwelling adults 65 years and older with cardiometabolic diseases. Polypharmacy was defined as the use of five or more medications on the index date. The primary outcome included clinical outcomes, including hospitalizations and emergency department visits. The secondary outcome focuses on hospital utilization, specifically medication costs and length of stay. RESULTS: The study included a cohort of 405,608 patients. Among these, the most frequently used drug classes in the polypharmacy and non-polypharmacy groups were HMG-CoA reductase inhibitors and dihydropyridines, respectively. After adjustment for covariates, polypharmacy was not associated with an increased risk of hospitalization (odds ratio [OR] 1.09, 95% confidence interval [CI] 0.95-1.26, p = 0.23) or ED visits (OR 1.28, 95% CI 0.97-1.68, p = 0.08). Similarly, no significant association was found with an increase in inpatient medication costs ($2,620.5, 95% CI $2387.3-$2894.3, p = 0.97) or length of stay (3.98 days, 95% CI 3.68-4.30 days, p = 0.79). However, polypharmacy was associated with higher medication costs in outpatient settings ($73.07, 95% CI $72-$74, p < 0.05) and ED visits ($51.2, 95% CI $44.5-$59.1, p < 0.05). CONCLUSION: Although polypharmacy is associated with increased healthcare costs in outpatient settings and ED visits, it does not significantly increase the risk of hospitalization or ED visits when properly managed.