Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 347
Filtrar
1.
Cell Rep Med ; 5(9): 101710, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39232496

RESUMO

Claudin18.2 has been recently recognized as a potential therapeutic target for gastric/gastroesophageal junction or pancreatic cancer. Here, we develop a Claudin18.2-directed antibody-drug conjugate (ADC), CMG901, with a potent microtubule-targeting agent MMAE (monomethyl auristatin E) and evaluate its preclinical profiles. In vitro studies show that CMG901 binds specifically to Claudin18.2 on the cell surface and kills tumor cells through direct cytotoxicity, antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and bystander killing activity. In vivo pharmacological studies show significant antitumor activity in patient-derived xenograft (PDX) models. Toxicity studies show that the major adverse effects related to CMG901 are reversible hematopoietic changes attributed to MMAE. The highest non-severely toxic dose (HNSTD) is 6 mg/kg in cynomolgus monkeys and 10 mg/kg in rats once every 3 weeks. CMG901's favorable preclinical profile supports its entry into the human clinical study. CMG901 is currently under phase 3 investigation in patients with advanced gastric/gastroesophageal junction adenocarcinoma expressing Claudin18.2 (NCT06346392).


Assuntos
Claudinas , Imunoconjugados , Animais , Feminino , Humanos , Masculino , Camundongos , Ratos , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Linhagem Celular Tumoral , Claudinas/metabolismo , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Macaca fascicularis , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Ensaios Clínicos Fase III como Assunto
2.
Front Endocrinol (Lausanne) ; 15: 1425101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39229373

RESUMO

Purpose: To develop a predictive model using machine learning for levothyroxine (L-T4) dose selection in patients with differentiated thyroid cancer (DTC) after resection and radioactive iodine (RAI) therapy and to prospectively validate the accuracy of the model in two institutions. Methods: A total of 266 DTC patients who received RAI therapy after thyroidectomy and achieved target thyroid stimulating hormone (TSH) level were included in this retrospective study. Sixteen clinical and biochemical characteristics that could potentially influence the L-T4 dose were collected; Significant features correlated with L-T4 dose were selected using machine learning random forest method, and a total of eight regression models were established to assess their performance in prediction of L-T4 dose after RAI therapy; The optimal model was validated through a two-center prospective study (n=263). Results: Six significant clinical and biochemical features were selected, including body surface area (BSA), weight, hemoglobin (HB), height, body mass index (BMI), and age. Cross-validation showed that the support vector regression (SVR) model was with the highest accuracy (53.4%) for prediction of L-T4 dose among the established eight models. In the two-center prospective validation study, a total of 263 patients were included. The TSH targeting rate based on constructed SVR model were dramatically higher than that based on empirical administration (Rate 1 (first rate): 52.09% (137/263) vs 10.53% (28/266); Rate 2 (cumulative rate): 85.55% (225/263) vs 53.38% (142/266)). Furthermore, the model significantly shortens the time (days) to achieve target TSH level (62.61 ± 58.78 vs 115.50 ± 71.40). Conclusions: The constructed SVR model can effectively predict the L-T4 dose for postoperative DTC after RAI therapy, thus shortening the time to achieve TSH target level and improving the quality of life for DTC patients.


Assuntos
Radioisótopos do Iodo , Neoplasias da Glândula Tireoide , Tireoidectomia , Tiroxina , Humanos , Tiroxina/sangue , Tiroxina/administração & dosagem , Tiroxina/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias da Glândula Tireoide/cirurgia , Neoplasias da Glândula Tireoide/radioterapia , Neoplasias da Glândula Tireoide/terapia , Radioisótopos do Iodo/uso terapêutico , Radioisótopos do Iodo/administração & dosagem , Adulto , Estudos Retrospectivos , Estudos Prospectivos , Aprendizado de Máquina , Tireotropina/sangue , Idoso , Período Pós-Operatório
3.
Microbiol Spectr ; : e0034124, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248524

RESUMO

The plasmid-mediated gene mcr-1 that makes bacteria resistant to the antibiotic colistin is spreading quickly, which means that colistin is no longer working well to treat Gram-negative bacterial infections. Herein, we utilized a computer-aided high-throughput screening drugs method to identify the natural product apigenin, a potential mcr-protein inhibitor, which effectively enhanced the antimicrobial activity of colistin. Several assays, including a checkerboard minimum inhibitory concentration assay, a time-kill assay, the combined disk test, molecular simulation dynamics, and animal infection models assay, were conducted to verify whether apigenin enhanced the ability of colistin to fight Gram-negative bacterial infections. The results showed that apigenin improved the antimicrobial activity of colistin against multidrug-resistant Enterobacteriaceae infection. Moreover, apigenin not only did not increase the toxic effect of colistin but also had the ability to effectively inhibit the frequency of bacterial resistance mutations to colistin. Studies clearly elucidated that apigenin could interfere with the thermal stability of the protein by binding to the mcr-1 protein. Additionally, the combination of apigenin and colistin could exert multiple effects, including disrupting bacterial membranes, the generation of bacterial nitric oxide and reactive oxygen species, as well as inhibiting bacterial adenosine triphosphate production. Furthermore, the addition of apigenin was able to significantly inhibit colistin-stimulated high expression levels of the bacterial mcr-1 gene. Finally, apigenin exhibited a characteristic anti-inflammatory effect while enhancing the antimicrobial activity of colistin against mcr-1-positive Escherichia coli (E. coli) infected animals. In conclusion, as a potential lead compound, apigenin is promising in combination with colistin in the future treatment of mcr-1-positive E. coli infections.IMPORTANCEThis study found that apigenin was able to inhibit the activity of the mcr-1 protein using a high-throughput virtual screening method. Apigenin effectively enhanced the antimicrobial activity of colistin against multidrug-resistant Enterobacteriaceae, including mcr-1-positive strains, in vitro and in vivo. This study will provide new options and strategies for the future treatment of multidrug-resistant pathogen infections.

4.
Ultrason Sonochem ; 111: 107062, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39293095

RESUMO

Crystallization is an important process that affects the properties of final products and is essential in nearly all chemical processing industries. In recent years, ultrasonic technology has received widespread attention due to its ability to enhance crystallization yield, improve crystal morphology and shape, and regulate the particle size and distribution of crystal products. It holds promising prospects for industrial crystallization. In this work, the ultrasonic cavitation effect and ultrasonic crystallization mechanism are described, and the influence of ultrasound on the crystallization effect of products is analysed and discussed. In addition, the application status of ultrasonic reactors and ultrasonic crystallization processes is introduced in detail, and the change trend from laboratory to industrialization is analyzed. Finally, the challenges and opportunities facing the industrialization of ultrasonic crystallization in future developments are discussed. The purpose of this work is to make the selective promotion or inhibition of ultrasound more helpful for industrial crystallization.

5.
Heliyon ; 10(17): e37040, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296080

RESUMO

Case summary: A 45-year-old man presented with a 4.0cm × 4.0cm mass in right lower lobe and a right lower lobectomy was performed. The pathological diagnosis from the right lower lobe mass was adenocarcinoma with an EGFR mutation in exon 21 (L858R). He chose osimertinib as postoperative adjuvant treatment. Eight months after the administration of osimertinib, leukocytosis was detected and we diagnosed the patient with chronic myeloid leukemia (CML). After the diagnosis was made, the patient started the treatment of flumatinib immediately, and treatment of osimertinib continued. After one month treatment, leukocytosis was completely relived. The patient was receiving treatment of osimertinib and flumatinib simultaneously with both lung cancer and leukemia well-controlled, and the side effects were tolerable. Conclusion: Hemogram of non-small cell lung cancer (NSCLC) patients should be carefully monitored during EGFR-TKIs treatment. While there is a potential association between EGFR-TKIs and the development of hematologic abnormalities such as CML, more evidence is needed to clarify whether EGFR-TKIs have a leukemogenic effect. For patients with CML during EGFR-TKIs treatment, osimertinib combined with flumatinib may be an effective treatment modalities and the side effects can be tolerated.

6.
Talanta ; 281: 126876, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277940

RESUMO

Due to the increasing crop losses caused by common and newly emerging phytopathogens, there is a pressing need for the development of rapid and reliable methods for phytopathogen detection and analysis. Leveraging advancements in biochemical engineering technologies and nanomaterial sciences, researchers have put considerable efforts on utilizing biofunctionalized magnetic micro- and nanoparticles (MPs) to develop rapid and reliable systems for phytopathogen detection. MPs facilitate the rapid, high-throughput analysis and in-field applications, while the biomacromolecules, which play key roles in the biorecognitions, interactions and signal amplification, determine the specificity, sensitivity, reliability, and portability of pathogen detection systems. The integration of MPs and biomacromolecules provides dimensionality- and composition-dependent properties, representing a novel approach to develop phytopathogen detection systems. In this review, we summarize and discuss the general properties, synthesis and characterization of MPs, and focus on biomacromolecule-functionalized MPs as well as their representative applications for phytopathogen detection and analysis reported over the past decade. Extensively studied bioreceptors, such as antibodies, phages and phage proteins, nucleic acids, and glycans that are involved in the recognitions and interactions, are covered and discussed. Additionally, the integration of MPs-based detection system with portable microfluidic devices to facilitate their in-field applications is also discussed. Overall, this review focuses on biomacromolecule-functionalized MPs and their applications for phytopathogen detection, aiming to highlight their potential in developing advanced biosensing systems for effective plant protection.

7.
iScience ; 27(9): 110721, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39262798

RESUMO

Stapokibart (CM310) is a humanized IL-4Rα monoclonal antibody currently undergoing phase 3 trials for type 2 inflammatory diseases. In contrast to dupilumab, which bound exclusively to human IL-4Rα, stapokibart demonstrated cross-species reactivity to IL-4Rα from human, cynomolgus monkey, and rat. Stapokibart exhibited comparable blocking activity to dupilumab. Epitope mapping revealed that stapokibart bound to distinct sites on IL-4Rα compared to dupilumab. In vitro assays showed that stapokibart was comparable or numerically superior in blocking IL-4Rα-mediated signaling compared to dupilumab. In vivo studies further demonstrated that stapokibart effectively inhibited the progression of type 2 inflammation. Pharmacokinetic studies revealed a circulating half-life of approximately 298-351 h in cynomolgus monkeys and 55-142 h in rats for stapokibart. Toxicity studies indicated a favorable safety profile in cynomolgus monkeys and rats. The preclinical evaluation of stapokibart supports its clinical development.

8.
Langmuir ; 40(36): 19155-19165, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39195735

RESUMO

The leaching process represents the primary bottleneck in achieving efficient utilization of zinc suboxide, thereby resulting in a squandering of germanium resources. In this Article, the kinetic mechanisms of conventional and ultrasonic enhanced reduction leaching of zinc suboxide were investigated while optimizing the leaching conditions. The optimized conditions for the ultrasonic enhanced reduction leaching process were found to be 358 K, FeS of 0.6% zinc suboxide mass, and 300 W of ultrasonic power. The leaching efficiency of germanium can reach 91.34% under these conditions, exhibiting an improvement of 8.51%, compared with conventional conditions. Moreover, the Fe3+ concentration in the leaching solution is consistently maintained at ∼15 mg/L, satisfying the requisite criteria for germanium precipitation. Moreover, both the conventional and ultrasonic leaching processes obey the Drozdov kinetic model and are governed by internal diffusion. The difference, however, is that, under ultrasonic conditions, the activation energy of the reaction is reduced by 2.05 kJ/mol, the self-resistance coefficient is smaller, the reaction rate is faster, and the germanium leaching efficiency is higher than under conventional conditions. Ultrasonically enhanced FeS reduction leaching disrupts the encapsulation of silica gel and lead sulfate, shattering large dust grains and reducing the surface tension and viscosity of the solution, thus reducing the energy barrier to the leaching of germanium-containing components and improving the kinetics. The present study elucidates the kinetic laws governing conventional and ultrasonic processes, thereby offering guidance and a theoretical foundation for enhancing the germanium leaching efficiency in zinc suboxide. These findings hold significant implications for maximizing the utilization of germanium resources and advancing the development of the germanium industry.

10.
Clin Cardiol ; 47(7): e24312, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953314

RESUMO

BACKGROUND: Papillary muscle (PM) infarction (PMI) detected by cardiac magnetic resonance imaging (CMR) is associated with poor outcomes. Whether PM parameters provide more value for mitral regurgitation (MR) management currently remains unclear. Therefore, we examined the prognostic value of PMI using CMR in patients with MR. METHODS: Between March 2018 and July 2023, we retrospectively enrolled 397 patients with MR undergoing CMR. CMR was used to detect PMI qualitatively and quantitively. We also collected baseline clinical, echocardiography, and follow-up data. RESULTS: Of the 397 patients with MR (52.4 ± 13.9 years), 117 (29.5%) were assigned to the PMI group, with 280 (70.5%) in the non-PMI group. PMI was demonstrated more in the posteromedial PM (PM-PM, 98/117) than in the anterolateral PM (AL-PM, 45/117). Compared with patients without PMI, patients with PMI had a decreased AL-PM (41.5 ± 5.4 vs. 45.6 ± 5.3)/PM-PM diastolic length (35.0 ± 5.2 vs. 37.9 ± 4.0), PM-longitudinal strain (LS, 20.4 ± 6.1 vs. 24.9 ± 4.6), AL-PM-LS (19.7 ± 6.8 vs. 24.7 ± 5.6)/PM-PM-LS (21.2 ± 7.9 vs. 25.2 ± 6.0), and increased inter-PM distance (25.7 ± 8.0 vs. 22.7 ± 6.2, all p < 0.001). Multiple logistic regression analyses identified male sex (odds ratio [OR] = 3.65, 95% confidence interval = 1.881-7.081, p < 0.001) diabetes mellitus (OR/95% CI/p = 2.534/1.13-5.68/0.024), AL-PM diastolic length (OR/95% CI/p = 0.841/0.77-0.92/< 0.001), PM-PM diastolic length (OR/95% CI/p = 0.873/0.79-0.964/0.007), inter-PM distance (OR/95% CI/p = 1.087/1.028-1.15/0.003), AL-PM-LS (OR/95% CI/p = 0.892/0.843-0.94/< 0.001), and PM-PM-LS (OR/95% CI/p = 0.95/0.9-0.992/0.021) as independently associated with PMI. Over a 769 ± 367-day follow-up, 100 (25.2%) patients had arrhythmia. Cox regression analyses indicated that PMI (hazard ratio [HR]/95% CI/p = 1.644/1.062-2.547/0.026), AL-PM-LS (HR/95% CI/p = 0.937/0.903-0.973/0.001), and PM-PM-LS (HR/95% CI/p = 0.933/0.902-0.965/< 0.001) remained independently associated with MR. CONCLUSIONS: The CMR-derived PMI and LS parameters improve the evaluation of PM dysfunction, indicating a high risk for arrhythmia, and provide additive risk stratification for patients with MR.


Assuntos
Imagem Cinética por Ressonância Magnética , Insuficiência da Valva Mitral , Músculos Papilares , Humanos , Insuficiência da Valva Mitral/fisiopatologia , Insuficiência da Valva Mitral/diagnóstico por imagem , Masculino , Feminino , Músculos Papilares/diagnóstico por imagem , Músculos Papilares/fisiopatologia , Estudos Retrospectivos , Pessoa de Meia-Idade , Imagem Cinética por Ressonância Magnética/métodos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico por imagem , Prognóstico , Seguimentos , Idoso
11.
Transl Psychiatry ; 14(1): 270, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956035

RESUMO

Brain function is vulnerable to the consequences of inadequate sleep, an adverse trend that is increasingly prevalent. The REM sleep phase has been implicated in coordinating various brain structures and is hypothesized to have potential links to brain variability. However, traditional imaging research have encountered challenges in attributing specific brain region activity to REM sleep, remained understudied at the whole-brain connectivity level. Through the spilt-night paradigm, distinct patterns of REM sleep phases were observed among the full-night sleep group (n = 36), the early-night deprivation group (n = 41), and the late-night deprivation group (n = 36). We employed connectome-based predictive modeling (CPM) to delineate the effects of REM sleep deprivation on the functional connectivity of the brain (REM connectome) during its resting state. The REM sleep-brain connectome was characterized by stronger connectivity within the default mode network (DMN) and between the DMN and visual networks, while fewer predictive edges were observed. Notably, connections such as those between the cingulo-opercular network (CON) and the auditory network, as well as between the subcortex and visual networks, also made significant contributions. These findings elucidate the neural signatures of REM sleep loss and reveal common connectivity patterns across individuals, validated at the group level.


Assuntos
Encéfalo , Conectoma , Imageamento por Ressonância Magnética , Privação do Sono , Sono REM , Humanos , Masculino , Privação do Sono/fisiopatologia , Privação do Sono/diagnóstico por imagem , Sono REM/fisiologia , Feminino , Adulto , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Adulto Jovem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiopatologia
12.
Genes (Basel) ; 15(7)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39062737

RESUMO

Circular RNA (circRNA) is a type of non-coding RNA with multiple biological functions. Whole circRNA genomes in plants have been identified, and circRNAs have been demonstrated to be widely present and highly expressed in various plant tissues and organs. CircRNAs are highly stable and conserved in plants, and exhibit tissue specificity and developmental stage specificity. CircRNAs often interact with other biomolecules, such as miRNAs and proteins, thereby regulating gene expression, interfering with gene function, and affecting plant growth and development or response to environmental stress. CircRNAs are less studied in plants than in animals, and their regulatory mechanisms of biogenesis and molecular functions are not fully understood. A variety of circRNAs in plants are involved in regulating growth and development and responding to environmental stress. This review focuses on the biogenesis and regulatory mechanisms of circRNAs, as well as their biological functions during growth, development, and stress responses in plants, including a discussion of plant circRNA research prospects. Understanding the generation and regulatory mechanisms of circRNAs is a challenging but important topic in the field of circRNAs in plants, as it can provide insights into plant life activities and their response mechanisms to biotic or abiotic stresses as well as new strategies for plant molecular breeding and pest control.


Assuntos
Regulação da Expressão Gênica de Plantas , Plantas , RNA Circular , RNA de Plantas , RNA Circular/genética , Plantas/genética , Plantas/metabolismo , RNA de Plantas/genética , Estresse Fisiológico/genética , MicroRNAs/genética , Desenvolvimento Vegetal/genética
13.
Materials (Basel) ; 17(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39063763

RESUMO

Time-dependent second-harmonic generation (TD-SHG) is an emerging sensitive and fast method to qualitatively evaluate the interface quality of the oxide/Si heterostructures, which is closely related to the interfacial electric field. Here, the TD-SHG is used to explore the interface quality of atomic layer deposited HfO2 films on Si substrates. The critical SHG parameters, such as the initial SHG signal and characteristic time constant, are compared with the fixed charge density (Qox) and the interface state density (Dit) extracted from the conventional electrical characterization method. It reveals that the initial SHG signal linearly decreases with the increase in Qox, while Dit is linearly correlated to the characteristic time constant. It verifies that the TD-SHG is a sensitive and fast method, as well as simple and noncontact, for evaluating the interface quality of oxide/Si heterostructures, which may facilitate the in-line semiconductor test.

14.
Phys Rev Lett ; 132(25): 250604, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38996251

RESUMO

As quantum circuits become more integrated and complex, additional error sources that were previously insignificant start to emerge. Consequently, the fidelity of quantum gates benchmarked under pristine conditions falls short of predicting their performance in realistic circuits. To overcome this problem, we must improve their robustness against pertinent error models besides isolated fidelity. Here, we report the experimental realization of robust quantum gates in superconducting quantum circuits based on a geometric framework for diagnosing and correcting various gate errors. Using quantum process tomography and randomized benchmarking, we demonstrate robust single-qubit gates against quasistatic noise and spatially correlated noise in a broad range of strengths, which are common sources of coherent errors in large-scale quantum circuits. We also apply our method to nonstatic noises and to realize robust two-qubit gates. Our Letter provides a versatile toolbox for achieving noise-resilient complex quantum circuits.

15.
BioDrugs ; 38(5): 681-689, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39080181

RESUMO

BACKGROUND: Stapokibart/CM310, a humanized monoclonal antibody targeting the interleukin-4 receptor α chain, has shown promising treatment benefits in patients with moderate-to-severe atopic dermatitis in previous phase II clinical trials. OBJECTIVE: We aimed to evaluate the long-term efficacy and safety of stapokibart in adults with moderate-to-severe atopic dermatitis. METHODS: Enrolled patients who previously completed parent trials of stapokibart received a subcutaneous stapokibart 600-mg loading dose, then 300 mg every 2 weeks up to 52 weeks. Efficacy outcomes included the proportions of patients with ≥ 50%/75%/90% improvements from baseline of parent trials in the Eczema Area and Severity Index, Investigator's Global Assessment, and weekly average of the daily Peak Pruritus Numerical Rating Scale. RESULTS: In total, 127 patients were enrolled, and 110 (86.6%) completed the study. At week 52, the Eczema Area and Severity Index-50/75/90 response rates were 96.3%, 87.9%, and 71.0%, respectively. An Investigator's Global Assessment 0/1 with a ≥ 2-point reduction was achieved in 39.3% of patients at week 16, increasing to 58.9% at week 52. The proportions of patients with ≥ 3-point and ≥ 4-point reductions in the weekly average of daily Peak Pruritus Numerical Rating Scale scores were 80.2% and 62.2%, respectively, at week 52. Improvement in patients' quality of life was sustained over a 52-week treatment period. Treatment-emergent adverse events occurred in 88.2% of patients, with an exposure-adjusted event rate of 299.2 events/100 patient-years. Coronavirus disease 2019, upper respiratory tract infection, and conjunctivitis were the most common treatment-emergent adverse events. CONCLUSIONS: Long-term treatment with stapokibart for 52 weeks showed high efficacy and good safety profiles, supporting its use as a continuous long-term treatment option for atopic dermatitis. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT04893707 (15 May, 2021).


Assuntos
Anticorpos Monoclonais Humanizados , Dermatite Atópica , Humanos , Dermatite Atópica/tratamento farmacológico , Adulto , Masculino , Feminino , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Pessoa de Meia-Idade , Resultado do Tratamento , Índice de Gravidade de Doença , Adulto Jovem , Subunidade alfa de Receptor de Interleucina-4/antagonistas & inibidores
16.
J Environ Manage ; 366: 121699, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981255

RESUMO

Germanium (Ge) is a dispersed metal primarily recovered from secondary Ge-containing resources. The traditional treatment method is hindered by incomplete impurity removal, resulting in a low grade of tannin germanium residue (TGR) and Ge concentrate, high production costs, and significant hazardous waste. This study proposes a new technology involving ultrasonic pre-purification of TGR to enhance the quality of Ge concentrate prepared by roasting. Under optimal conditions (ultrasonic power 225 W, liquid-solid ratio 7:1, H2SO4 concentration 20 g/L, reaction time 30 min, and reaction temperature 40 °C), the removal efficiencies of impurities Zn, Mg, Fe, As, and S from purified tannin germanium residue (PTGR) increased by 4.2%, 4.2%, 17.4%, 8.7%, and 2.9% respectively. Moreover, the Ge content in PTGR increased from 2.9% to 4.1%. The mechanism of ultrasonic action indicated the ultrasonic energy reduced the particle size of the reactants from 67.698 µm to 31.768 µm, thereby accelerating impurity removal. Roasting ultrasonic-purified tannin germanium residue (U-PTGR) at 650 °C with 40 L/h air flow for 120 min produced Ge concentrate with a Ge grade of 33.26%, which is 6.11% higher than the regular method. Analysis using XRD and HRTEM, combined with crystallite size calculation, revealed that the Ge concentrate prepared by U-PTGR exhibited low sintering degree, good crystal properties, and high crystallinity. Implementing this technology could save enterprises approximately $57,412 annually in production costs. Additionally, it holds significant practical importance in reducing hazardous waste emissions and promoting the high-quality development of the Ge industry.


Assuntos
Germânio , Taninos , Ultrassom , Germânio/química , Taninos/química
17.
Anal Biochem ; 694: 115623, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39059567

RESUMO

CM310 is a recombinant humanized monoclonal antibody targeting Interleukin (IL)-4 receptor alpha (IL-4Rα). IL-4Rα blockade prevents IL-4 and IL-13 from binding to their receptor, thereby inhibiting downstream signaling pathways that drive Type 2 helper T-cell (Th2) inflammation. CM310 holds potential for treating Th2-related inflammatory diseases, such as asthma, atopic dermatitis and chronic sinusitis with nasal polyposis. In this study, a direct enzyme-linked immunosorbent assay (ELISA) was developed to measure the concentrations of CM310 in rat serum. Seven calibration standards (ranging from 25 to 1600 ng/mL) and three quality controls (70, 500 and 1250 ng/mL) were defined. The limit of detection (LOD), lower limit of quantification (LLOQ) and upper limit of quantification (ULOQ) were 13, 25 and 1600 ng/mL, respectively. The method exhibited excellent precision and accuracy and successfully applied to in vitro serum stability and pharmacokinetic (PK) studies. In conclusion, we have developed and validated a highly sensitive and selective method for measuring CM310 in Sprague-Dawley rats. The development and validation ELISA method met the acceptable criteria, which suggested that these can be applied to quantify CM310, as well as in PK studies.


Assuntos
Ensaio de Imunoadsorção Enzimática , Ratos Sprague-Dawley , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Ratos , Proteínas Recombinantes , Anticorpos Monoclonais Humanizados/farmacocinética , Masculino , Limite de Detecção , Humanos , Subunidade alfa de Receptor de Interleucina-4/antagonistas & inibidores , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/sangue
18.
Adv Sci (Weinh) ; : e2401716, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840455

RESUMO

The demand for miniaturized and integrated multifunctional devices drives the progression of high-performance infrared photodetectors for diverse applications, including remote sensing, air defense, and communications, among others. Nonetheless, infrared photodetectors that rely solely on single low-dimensional materials often face challenges due to the limited absorption cross-section and suboptimal carrier mobility, which can impair sensitivity and prolong response times. Here, through experimental validation is demonstrated, precise control over energy band alignment in a type-II van der Waals heterojunction, comprising vertically stacked 2D Ta2NiSe5 and the topological insulator Bi2Se3, where the configuration enables polarization-sensitive, wide-spectral-range photodetection. Experimental evaluations at room temperature reveal that the device exhibits a self-powered responsivity of 0.48 A·W-1, a specific directivity of 3.8 × 1011 cm·Hz1/2·W-1, a response time of 151 µs, and a polarization ratio of 2.83. The stable and rapid photoresponse of the device underpins the utility in infrared-coded communication and dual-channel imaging, showing the substantial potential of the detector. These findings articulate a systematic approach to developing miniaturized, multifunctional room-temperature infrared detectors with superior performance metrics and enhanced capabilities for multi-information acquisition.

19.
J Xray Sci Technol ; 32(4): 973-991, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38943423

RESUMO

BACKGROUND: Coronary artery segmentation is a prerequisite in computer-aided diagnosis of Coronary Artery Disease (CAD). However, segmentation of coronary arteries in Coronary Computed Tomography Angiography (CCTA) images faces several challenges. The current segmentation approaches are unable to effectively address these challenges and existing problems such as the need for manual interaction or low segmentation accuracy. OBJECTIVE: A Multi-scale Feature Learning and Rectification (MFLR) network is proposed to tackle the challenges and achieve automatic and accurate segmentation of coronary arteries. METHODS: The MFLR network introduces a multi-scale feature extraction module in the encoder to effectively capture contextual information under different receptive fields. In the decoder, a feature correction and fusion module is proposed, which employs high-level features containing multi-scale information to correct and guide low-level features, achieving fusion between the two-level features to further improve segmentation performance. RESULTS: The MFLR network achieved the best performance on the dice similarity coefficient, Jaccard index, Recall, F1-score, and 95% Hausdorff distance, for both in-house and public datasets. CONCLUSION: Experimental results demonstrate the superiority and good generalization ability of the MFLR approach. This study contributes to the accurate diagnosis and treatment of CAD, and it also informs other segmentation applications in medicine.


Assuntos
Angiografia por Tomografia Computadorizada , Doença da Artéria Coronariana , Vasos Coronários , Humanos , Angiografia por Tomografia Computadorizada/métodos , Vasos Coronários/diagnóstico por imagem , Doença da Artéria Coronariana/diagnóstico por imagem , Angiografia Coronária/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Aprendizado de Máquina
20.
Phys Rev Lett ; 132(20): 203602, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829095

RESUMO

Fock states with a well-defined number of photons in an oscillator have shown a wide range of applications in quantum information science. Nonetheless, their usefulness has been marred by single and multiphoton losses due to unavoidable environment-induced dissipation. Though several dissipation engineering methods have been developed to counteract the leading single-photon-loss error, averting multiple-photon losses remains elusive. Here, we experimentally demonstrate a dissipation engineering method that autonomously stabilizes multiphoton Fock states against losses of multiple photons using a cascaded selective photon-addition operation in a superconducting quantum circuit. Through measuring the photon-number populations and Wigner tomography of the oscillator states, we observe a prolonged preservation of nonclassical Wigner negativities for the stabilized Fock states |N⟩ with N=1, 2, 3 for a duration of about 10 ms. Furthermore, the dissipation engineering method demonstrated here also facilitates the implementation of a nonunitary operation for resetting a binomially encoded logical qubit. These results highlight potential applications in error-correctable quantum information processing against multiple-photon-loss errors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...