Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
1.
Autoimmunity ; 57(1): 2391350, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39155523

RESUMO

Antiphospholipid syndrome (APS) is an autoimmune disease characterized by recurrent arteriovenous thrombosis and pathological pregnancy, accompanied by persistent antiphospholipid antibodies, (aPL). The incidence of APS is increasing year by year, clinicians lack of understanding of this type of disease, easy to misdiagnose and miss the diagnosis. Therefore, it is extremely important to establish a suitable animal model to reduce the process of disease development as much as possible and improve clinicians' understanding and understanding. This review will summarize the animal models of APS from the aspects of modeling methods, modeling mechanism, evaluation indicators and advantages and disadvantages of methods, providing a reference for finding an animal model highly similar to human APS, helping researchers to further clarify the pathogenesis of APS and find potential therapeutic targets, so as to achieve early diagnosis, early intervention, and ultimately improve the prognosis of patients.


Assuntos
Anticorpos Antifosfolipídeos , Síndrome Antifosfolipídica , Modelos Animais de Doenças , Síndrome Antifosfolipídica/imunologia , Síndrome Antifosfolipídica/diagnóstico , Animais , Humanos , Anticorpos Antifosfolipídeos/imunologia , Camundongos , Gravidez
2.
Adv Sci (Weinh) ; : e2406325, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137359

RESUMO

Liquid manipulation using tubular actuators finds diverse applications ranging from microfluidics, printing, liquid transfer to micro-reactors. Achieving flexible and simple regulation of manipulated liquid droplets during transport is crucial for the tubular liquid actuators to perform complex and multiple functions, yet it remains challenging. Here, a facile tubular actuator for directional transport of various liquid droplets under the control of an externally applied magnetic field is presented. The surfaces of the actuator can be engineered with submillimeter-sized through-hole pores, which enables the liquid droplet to be easily modulated in the transport process. Furthermore, the liquid actuator with featured through-hole pores is expanded to function as a switch in an integrated external electric circuit by magnetically controlling the motion of a conductive liquid droplet. This work develops a strategy for regulating liquid droplets in the tubular actuation systems, which may inspire ideas for designing functional liquid actuators with potential applications in microfluidics, microchemical reaction, liquid switch, and liquid robotics.

3.
Int J Ophthalmol ; 17(8): 1387-1395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156784

RESUMO

AIM: To investigate the impact of hsa_circ_0007482 on the proliferation and apoptosis of human pterygium fibroblasts (HPFs) and its correlation with the severity grades of pterygium. METHODS: Pterygium and normal conjunctival tissues were collected from the superior area of the same patient's eye (n=33). The correlation between pterygium severity and hsa_circ_0007482 expression using quantitative reverse-transcription polymerase chain reaction (RT-qPCR) were analyzed. Three distinct siRNA sequences targeting hsa_circ_0007482, along with a negative control sequence, were transfected into HPFs. Cell proliferation was assessed using the cell counting kit-8. Expression levels of Ki67, proliferating cell nuclear antigen (PCNA), Cyclin D1, Bax, B-cell lymphoma-2 (Bcl-2), and Caspase-3 were measured via RT-qPCR. Immunofluorescence staining was employed to detect Ki67 and vimentin expressions. Apoptosis was evaluated using flow cytometry. RESULTS: Hsa_circ_0007482 expression was significantly higher in pterygium tissues compared to normal conjunctival tissues (P<0.001). Positive correlations were observed between hsa_circ_0007482 expression and pterygium severity, thickness, and vascular density. Knockdown of hsa_circ_0007482 inhibited cell proliferation, reducing the mRNA expression of Ki67, PCNA, and Cyclin D1 in HPFs. Hsa_circ_0007482 knockdown induced apoptosis, increasing mRNA expression levels of Bax and Caspase-3, while decreasing Bcl-2 expression in HPFs. Additionally, hsa_circ_0007482 knockdown attenuated vimentin expression in HPFs. CONCLUSION: The downregulation of hsa_circ_0007482 effectively hampers cell proliferation and triggers apoptosis in HPFs. There are discernible positive correlations detected between the expression of hsa_circ_0007482 and the severity of pterygium.

4.
J Food Prot ; : 100346, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147098

RESUMO

Dark chocolate produced on equipment used to manufacture milk chocolate can contain milk due to cross-contact. This study evaluated the use of dry cleaning methods for removing milk chocolate residue from a butterfly or ball valve attached to a stainless steel pipe and from pilot-scale equipment used in chocolate manufacture. Milk-free dark chocolate (40°C) was pumped through a milk chocolate-contaminated valve/pipe assembly after no cleaning, use of a pig purging treatment, or a 40°C cocoa butter flush. Dark chocolate samples were collected at 7-sec intervals. Treatments investigated for removal of residual milk chocolate from a conche and a ball mill included no cleaning, a 40°C cocoa butter rinse, and wet cleaning. After cleaning, three batches of dark chocolate (40°C) were processed in the ball mill and conche, and each batch was collected. Milk chocolate was processed on a 3-roll refiner, followed by push-through with dark chocolate (∼9 kg) with 0.3 kg samples collected at 5-min intervals. Dark chocolate samples were analyzed for milk concentrations by ELISA. Trials and analyses were completed in triplicate. Dark chocolate push-through alone resulted in milk concentrations ≥4,500 µg/g in samples obtained from the contaminated valve/pipe combinations within the first few seconds of collection, and ≥16.2 kg of dark chocolate was needed to obtain milk concentrations below the ELISA LOQ (2.5 µg/g). A pig purging treatment of the ball valve/pipe assembly resulted in milk concentrations below the ELISA LOQ. A cocoa butter flush of the butterfly valve/pipe decreased initial milk concentrations, but milk was detected until ≥18.7 kg dark chocolate purge. Milk concentrations in first batches of dark chocolate processed in a ball mill and conche without cleaning were ≥17,000 µg/g while use of a cocoa butter rinse reduced milk levels in dark chocolate by ≥89%. Some dry cleaning treatments were effective at reducing levels of milk in dark chocolate due to cross-contact.

5.
Talanta ; 280: 126787, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39213887

RESUMO

Utilizing non-invasive, real-time dynamic imaging and high-resolution detection tools to track polarity changes in Sjögren's syndrome (SS) contributes to a better understanding of the disease progression. Herein, a ratiometric polarity-sensitive fluorescent probe (DIM) was designed and synthesized, DIM consisted of dicyanoisophorone as the fluorophore and morpholine moiety as lysosome targeting. DIM showed a ratiometric response to polarity and high selectivity (unaffected by viscosity, pH, ROS, RNS, etc.), offering a more accurate analysis of intracellular polarity through a built-in internal reference calibration. The polarity abnormality of submandibular glands in non-obese diabetic (NOD) mice was revealed and verified by in vivo ratiometric fluorescence imaging of DIM, suggesting that fluorescent probe have great potential in the diagnosis of salivary gland abnormalities.

6.
Bioresour Technol ; 409: 131227, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39117241

RESUMO

Screening and isolating acid-tolerant bacteria capable of efficient hydrogen production can mitigate the inhibitory effects on microbial activity caused by rapid pH drops during fermentation. In this study, we isolated an acid-tolerant and highly efficient hydrogen-producing bacterium, named Clostridium sp. BLY-1, from acidic soil. Compared to the model strain Clostridium pasteurianum DSM 525, BLY-1 demonstrates a faster growth rate and superior hydrogen production capabilities. At an initial pH of 4.0, BLY-1's hydrogen production is 7.5 times greater than that of DSM 525, and under optimal conditions (pH=5.0), BLY-1's hydrogen production rate is 42.13% higher than DSM 525. Genomic analysis revealed that BLY-1 possesses a complete CiaRH two-component system and several stress-resistance components absent in DSM 525, which enhance its growth and hydrogen production in acidic environments. These findings provide a novel avenue for boosting the hydrogen production capabilities of Clostridium strains, offering new resources for advancing the green hydrogen industry.


Assuntos
Clostridium , Fermentação , Hidrogênio , Hidrogênio/metabolismo , Clostridium/metabolismo , Concentração de Íons de Hidrogênio , Ácidos/metabolismo , Filogenia
7.
Eur J Pharmacol ; 982: 176894, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147013

RESUMO

Sepsis is a systemic inflammatory response syndrome triggered by infection, presenting with symptoms such as fever, increased heart rate, and low blood pressure. In severe cases, it can lead to multiple organ dysfunction, posing a life-threatening risk. Sepsis-induced cardiomyopathy (SIC) is a critical factor in the poor prognosis of septic patients, leading to myocardial dysfunction characterized by cell death, inflammation, and diminished cardiac function. Ferroptosis, an iron-dependent form of programmed cell death, is a key mechanism causing cardiomyocyte damage in SIC. Growth differentiation factor 15 (GDF15), a member of the TGF-ß superfamily, is associated with various cardiovascular diseases and can inhibit oxidative stress, reduce reactive oxygen species (ROS), and suppress ferroptosis. Elevated serum GDF15 levels in sepsis are correlated with organ injuries, suggesting its potential as a therapeutic target. However, its role and mechanisms in SIC remain unclear. Glutathione peroxidase 4 (GPX4), the only enzyme capable of reducing lipid peroxides within cells, protects cells by reducing lipid peroxidation levels and inhibiting ferroptosis. Investigating the regulatory factors of GPX4 may provide a theoretical basis for SIC treatment. In this study, a mouse SIC model revealed that elevated GDF15 exerts a protective effect. Antagonizing GDF15 exacerbates myocardial damage. Through transcriptomic analysis and other methods, we confirmed that GDF15 inhibits the expression of SOCS1 by activating the ALK5-SMAD2/3 pathway, thereby activates the JAK2/STAT3 pathway, promotes the transcription of GPX4, inhibits ferroptosis in cardiomyocytes, and plays a myocardial protective role in SIC.

8.
Clin Exp Med ; 24(1): 196, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39174664

RESUMO

The utilization of artificial intelligence (AI) in rheumatic diseases has enhanced the diagnostic accuracy of rheumatic diseases, enabled the prediction of patient outcomes, expanded treatment options, and facilitated the provision of individualized medical solutions. The research in this field has been progressively growing in recent years. Consequently, there is a need for bibliometric analysis to elucidate the current state of advancement and predominant research foci in AI applications within rheumatic diseases. Additionally, it is crucial to identify key contributors and their interrelations in this field. This study aimed to conduct a bibliometric analysis to investigate the current research hotspots and collaborative networks in the application of AI in rheumatic disease in recent years. A comprehensive search was conducted in Web of Science for articles on artificial intelligence in rheumatic diseases, published in SSCI and SCI-EXPANDED until January 1, 2024. Utilizing software tools like VOSviewers and CiteSpace, we analyzed various parameters including publication year, journal, country, institution, and authorship. This analysis extended to examining cited authors, generating reference and citation network graphs, and creating co-citation network and keyword maps. Additionally, research hotspots and trends in this domain were evaluated. As of January 1, 2024, a total of 3508 articles have been published on the application of artificial intelligence (AI) in rheumatic disease, exhibiting a steady rise in both the annual publication frequency and rate. "Scientific Reports" emerged as the leading journal in terms of relevant publications. The United States stood out as the predominant country in terms of the volume of published papers, with the University of California, San Francisco (UCSF) being the most prolific and frequently cited institution. Among authors, Young Ho Lee and Valentina Pedoia were noted for their significant contributions, with Pedoia achieving the highest average citation count per publication. Machine learning emerged as a prominent and central keyword. The trend indicates a growing interest in AI research within rheumatologic diseases, with its role expected to become increasingly pivotal in the field. This study presents a comprehensive summary of research trends and developments in the application of artificial intelligence (AI) in rheumatic diseases. It offers insights into potential collaborations and prospects for future research, clarifying the research frontiers and emerging directions in recent years. The findings of this study serve as a valuable reference for scholars studying rheumatology and immunology.


Assuntos
Inteligência Artificial , Bibliometria , Doenças Reumáticas , Humanos
9.
Front Pharmacol ; 15: 1421657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104393

RESUMO

Lupus nephritis (LN), a leading cause of death in Systemic Lupus Erythematosus (SLE) patients, presents significant diagnostic and prognostic challenges. Although renal pathology offers critical insights regarding the diagnosis, classification, and therapy for LN, its clinical utility is constrained by the invasive nature and limited reproducibility of renal biopsies. Moreover, the continuous monitoring of renal pathological changes through repeated biopsies is impractical. Consequently, there is a growing interest in exploring urine as a non-invasive, easily accessible, and dynamic "liquid biopsy" alternative to guide clinical management. This paper examines novel urinary biomarkers from a renal pathology perspective, encompassing cellular components, cytokines, adhesion molecules, auto-antibodies, soluble leukocyte markers, light chain fragments, proteins, small-molecule peptides, metabolomics, urinary exosomes, and ribonucleic acids. We also discuss the application of combined models comprising multiple biomarkers in assessing lupus activity. These innovative biomarkers and models offer insights into LN disease activity, acute and chronic renal indices, fibrosis, thrombotic microangiopathy, podocyte injury, and other pathological changes, potentially improving the diagnosis, management, and prognosis of LN. These urinary biomarkers or combined models may serve as viable alternatives to traditional renal pathology, potentially revolutionizing the method for future LN diagnosis and observation.

10.
Front Immunol ; 15: 1425443, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104538

RESUMO

T cells, as a major lymphocyte population involved in the adaptive immune response, play an important immunomodulatory role in the early stages of autoimmune diseases. Autophagy is a cellular catabolism mediated by lysosomes. Autophagy maintains cell homeostasis by recycling degraded cytoplasmic components and damaged organelles. Autophagy has a protective effect on cells and plays an important role in regulating T cell development, activation, proliferation and differentiation. Autophagy mediates the participation of T cells in the acquired immune response and plays a key role in antigen processing as well as in the maintenance of T cell homeostasis. In autoimmune diseases, dysregulated autophagy of T cells largely influences the pathological changes. Therefore, it is of great significance to study how T cells play a role in the immune mechanism of autoimmune diseases through autophagy pathway to guide the clinical treatment of diseases.


Assuntos
Doenças Autoimunes , Autofagia , Linfócitos T , Humanos , Autofagia/imunologia , Doenças Autoimunes/imunologia , Animais , Linfócitos T/imunologia , Ativação Linfocitária/imunologia
11.
Development ; 151(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39007397

RESUMO

Many genes are known to regulate retinal regeneration after widespread tissue damage. Conversely, genes controlling regeneration after limited cell loss, as per degenerative diseases, are undefined. As stem/progenitor cell responses scale to injury levels, understanding how the extent and specificity of cell loss impact regenerative processes is important. Here, transgenic zebrafish enabling selective retinal ganglion cell (RGC) ablation were used to identify genes that regulate RGC regeneration. A single cell multiomics-informed screen of 100 genes identified seven knockouts that inhibited and 11 that promoted RGC regeneration. Surprisingly, 35 out of 36 genes known and/or implicated as being required for regeneration after widespread retinal damage were not required for RGC regeneration. The loss of seven even enhanced regeneration kinetics, including the proneural factors neurog1, olig2 and ascl1a. Mechanistic analyses revealed that ascl1a disruption increased the propensity of progenitor cells to produce RGCs, i.e. increased 'fate bias'. These data demonstrate plasticity in the mechanism through which Müller glia convert to a stem-like state and context specificity in how genes function during regeneration. Increased understanding of how the regeneration of disease-relevant cell types is specifically controlled will support the development of disease-tailored regenerative therapeutics.


Assuntos
Animais Geneticamente Modificados , Células Ganglionares da Retina , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistemas CRISPR-Cas/genética , Regeneração/genética , Regeneração/fisiologia , Retina/metabolismo , Retina/citologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Fatores de Transcrição
12.
Biomater Sci ; 12(16): 3981-4005, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38979695

RESUMO

Objective: To conduct bibliometric analysis of the application of inorganic nanomaterials to autoimmune diseases to characterize current research trends and to visualize past and emerging trends in this field in the past 15 years. Methods: The evolution and thematic trends of the application of inorganic nanomaterials to autoimmune diseases from January 1, 1985, to March 15, 2024, were analyzed by bibliometric analysis of data retrieved and extracted from the Web of Science Core Collection (WoSCC) database. A total of 734 relevant reports in the literature were evaluated according to specific characteristics such as year of publication, journal, institution, country/region, references, and keywords. VOSviewer was used to build co-authorship analysis, co-occurrence analysis, co-citation analysis, and network visualization. Some important subtopics identified by bibliometric characterization are further discussed and reviewed. Result: From 2009 to 2024, annual publications worldwide increased from 11 to 95, an increase of 764%. ACS Nano published the most papers (14) with the most citations (1372). China (230 papers, 4922 citations) and the Chinese Academy of Sciences (36 papers, 718 citations) are the most productive and influential country and institution, respectively. The first 100 keywords were co-clustered to form four clusters: (1) the application of inorganic nanomaterials in drug delivery, (2) the application of inorganic nano-biosensing to autoimmune diseases, (3) the use of inorganic nanomaterials for imaging applied to autoimmune diseases, and (4) the application of inorganic nanomaterials in the treatment of autoimmune diseases. Combination therapy, microvesicles, photothermal therapy (PTT), targeting, diagnostics, transdermal, microneedling, silver nanoparticles, psoriasis, and inflammatory cytokines are the latest high-frequency keywords, marking the emerging frontier of inorganic nanomaterials in the field of autoimmune diseases. Sub-topics were further discussed to help researchers determine the scope of research topics and plan research directions. Conclusion: Over the past 39 years, the application of inorganic nanotechnology to the field of autoimmune diseases shows extensive cooperation between countries and institutions, showing a continuous increase in the number of reports in the literature, and has clinical translation prospects. Future research should further improve the safety of inorganic nanomaterials, clarify the mechanism of action of nanomaterials, establish a standardized nanomaterial preparation and performance evaluation system, and ultimately achieve the goal of early detection and precise treatment of autoimmune diseases.


Assuntos
Doenças Autoimunes , Bibliometria , Nanoestruturas , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/terapia , Nanoestruturas/química , Humanos , Animais
13.
World J Gastrointest Surg ; 16(6): 1709-1716, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38983324

RESUMO

BACKGROUND: Locally advanced gastric cancer (LAGC) is a common malignant tumor. In recent years, neoadjuvant chemotherapy has gradually become popular for the treatment of LAGC. AIM: To investigate the efficacy of oxaliplatin combined with a tigio neoadjuvant chemotherapy regimen vs a conventional chemotherapy regimen for LAGC. METHODS: Ninety patients with LAGC were selected and randomly divided into control and study groups with 45 patients in each group, according to the numerical table method. The control group was treated with conventional chemotherapy, and the study group was treated with oxaliplatin combined with tigio-neoadjuvant chemotherapy. The primary outcome measures were the clinical objective response rate (ORR) and surgical resection rate (SRR), whereas the secondary outcome measures were safety and Karnofsky Performance Status score. RESULTS: The ORR in the study group was 80.00%, which was significantly higher than that of the control group (57.78%). In the study group, SRR was 75.56%, which was significantly higher than that of the control group (57.78%). There were 15.56% adverse reactions in the study group and 35.56% in the control group. These differences were statistically significant between the two groups. CONCLUSION: The combination of oxaliplatin and tigio before surgery as neoadjuvant chemotherapy for patients with LAGC can effectively improve the ORR and SRR and is safe.

14.
Food Chem X ; 23: 101588, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39036483

RESUMO

The identification and quantification of xanthine are crucial for assessing the freshness and quality of food products, particularly in the seafood industry. Herein, a new approach was developed, involving the in-situ controllable growth of Pt91Ru9 nanoparticles on graphitic carbon nitride to yield Pt91Ru9@C3N4 catalytic materials. By integrating Pt91Ru9@C3N4 with the xanthine/xanthine oxidase (XOD) enzyme catalytic system, a nanozyme-enzyme tandem platform was obtained for the quantification analysis of xanthine. Under the catalytic oxidation of xanthine by XOD in the presence O2, H2O2 was generated. Upon the addition of peroxidase-like activity of Pt91Ru9@C3N4, H2O2 can be decomposed into •OH and 1O2, which can further catalyze the oxidation of TMB to its oxidation product oxTMB with an absorption peak at 652 nm. This smartphone-assisted portable colorimetric sensor for visual monitoring xanthine with a low detection limit of 8.92 nmol L-1, and successfully applied to detect xanthine in grass carp and serum samples.

16.
J Asthma ; : 1-9, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38913839

RESUMO

OBJECTIVES: Dexamethasone has become the standard of care for pediatric patients with status asthmaticus in the emergency department (ED) setting. Inpatient providers often must decide between continuing the second dose of dexamethasone or transitioning to prednisone. The effectiveness of receiving dexamethasone followed by prednisone (combination therapy) compared to only prednisone or dexamethasone remains unclear. This study compares patient characteristics and ED reutilization/hospital readmission outcomes of dexamethasone, prednisone, and combination therapy for inpatient asthma management. METHODS: A retrospective study was conducted at our tertiary children's hospital of children aged 2 to 18 years hospitalized between March 2016 and December 2018 with a primary discharge diagnosis of asthma, reactive airway disease, or bronchospasm. The differences between steroid groups were compared using Fisher's exact or Chi-square tests for categorical variables, and a Kruskal-Wallis test for continuous variables. A multivariable logistic regression was performed to analyze ED reutilization and hospital readmission rates. RESULTS: 1697 subjects met inclusion criteria. 115 (6.8%) patients received dexamethasone, 597 (35.2%) received prednisone, and 985 (58.0%) received combination therapy. Patients prescribed combination therapy had a lower exacerbation severity than patients prescribed prednisone, but higher severity than patients prescribed dexamethasone (p < .001, p = .001, respectively). Dexamethasone and combination therapy were not associated with increased 30-day ED reutilization/hospital readmissions compared to prednisone (p > .05). CONCLUSIONS: In our study, most patients hospitalized for status asthmaticus received combination therapy. Despite the differences in severity between steroid groups, outcomes of combination therapy and dexamethasone monotherapy, as measured by frequency of ED reutilizations/hospital readmissions, are comparable to prednisone monotherapy.

17.
Front Genet ; 15: 1405715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933921

RESUMO

In recent years, burgeoning research has underscored the pivotal role of non-coding RNA in orchestrating the growth, development, and pathogenesis of various diseases across organisms. However, despite these advances, our understanding of the specific contributions of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) to lens development remains notably limited. Clarifying the intricate gene regulatory networks is imperative for unraveling the molecular underpinnings of lens-related disorders. In this study, we aimed to address this gap by conducting a comprehensive analysis of the expression profiles of messenger RNAs (mRNAs), lncRNAs, and circRNAs at critical developmental time points of the mouse lens, encompassing both embryonic (E10.5, E12.5, and E16.5) and postnatal stages (P0.5, P10.5, and P60). Leveraging RNA-sequencing technology, we identified key transcripts pivotal to lens development. Our analysis revealed differentially expressed (DE) mRNAs, lncRNAs, and circRNAs across various developmental stages. Particularly noteworthy, there were 1831 co-differentially expressed (CO-DE) mRNAs, 150 CO-DE lncRNAs, and 13 CO-DE circRNAs identified during embryonic stages. Gene Ontology (GO) enrichment analysis unveiled associations primarily related to lens development, DNA conformational changes, and angiogenesis among DE mRNAs and lncRNAs. Furthermore, employing protein-protein interaction networks, mRNA-lncRNA co-expression networks, and circRNA-microRNA-mRNA networks, we predicted candidate key molecules implicated in lens development. Our findings underscore the pivotal roles of lncRNAs and circRNAs in this process, offering fresh insights into the pathogenesis of lens-related disorders and paving the way for future exploration in this field.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124699, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38909559

RESUMO

The identification and quantification of melatonin (MT) are crucial for early diagnosis of disorders associated with circadian rhythm disruption. Herein, novel blue-emissive carbon dots (BCDs) were synthesized through an improved hydrothermal treatment using serine and malic acid as reductant and carbon source. The excellent optical properties of the as-obtained BCDs were used for ratiometric sensing by strategically constructing a MT sensing system integrating BCDs with C3N4 nanosheets loaded with platinum/ruthenium nanoparticles (PtRu/CN). In this system, H2O2 activated the peroxidase-like activity of PtRu/CN to generate •OH and 1O2 for oxidizing the colorless o-phenylenediamine (OPD) into yellow 2,3-diaminophenazine (DAP) with fluorescence emission at 565 nm. Concurrently, the fluorescence emission of BCDs at 439 nm was quenched by the generated DAP via the static quenching and inner filter effect (IFE) process. However, MT rapidly scavenged the generated free radicals to reverse the ratio fluorescence signal. The developed BCDs/PtRu/CN/OPD/H2O2 sensing platform enabled quantitative analysis of MT at concentrations ranging from 0.06 to 600 µmol/L with a low detection limit of 23.56 nmol/L. Moreover, smartphone-based RGB sensing of MT was successfully developed for rapid visualization and portable processing. More broadly, novel insights into the preparation of carbon dots with sensitive fluorescence sensing properties were presented, promising for future considerations.


Assuntos
Carbono , Limite de Detecção , Melatonina , Platina , Pontos Quânticos , Espectrometria de Fluorescência , Comprimidos , Carbono/química , Melatonina/análise , Pontos Quânticos/química , Espectrometria de Fluorescência/métodos , Comprimidos/análise , Platina/química , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Humanos , Nanopartículas/química
19.
J Hazard Mater ; 476: 134909, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38905979

RESUMO

Developing highly-efficient electrocatalysts for the nitrate reduction reaction (NITRR) is a persistent challenge. Here, we present the successful synthesis of 14 amorphous/low crystallinity metal nanofilms on three-dimensional carbon fibers (M-NFs/CP), including Al, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, In, Sn, Pb, Au, or Bi, using rapid thermal evaporation. Among these samples, our study identifies the amorphous Co nanofilm with fine agglomerated Co clusters as the optimal electrocatalyst for NITRR in a neutral medium. The resulting Co-NFs/CP exhibits a remarkable Faradaic efficiency (FENH3) of 91.15 % at - 0.9 V vs RHE, surpassing commercial Co foil (39 %) and Co powder (20 %), despite sharing the same metal composition. Furthermore, during the electrochemical NITRR, the key intermediates on the surface of the Co-NFs/CP catalyst were detected by in situ Fourier-transform infrared (FTIR) spectroscopy, and the possible reaction ways were probed by Density functional theory (DFT) calculations. Theoretical calculations illustrate that the abundant low-coordinate Co atoms of Co-NFs/CP could enhances the adsorption of *NO3 intermediates compared to crystalline Co. Additionally, the amorphous Co structure lowers the energy barrier for the rate-determining step (*NH2→*NH3). This work opens a new avenue for the controllable synthesis of amorphous/low crystallinity metal nano-catalysts for various electrocatalysis reaction applications.

20.
Pediatr Cardiol ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842557

RESUMO

Pulmonary vein stenosis (PVS) is a rare, serious, and progressive disease in the pediatric population. Evaluation is complex and involves multimodality imaging. Diagnosis is important as early treatment to prevent progressive pulmonary hypertension and right ventricular dysfunction is essential. Adult studies have shown good correlation between various imaging modalities; however, there are limited data in children. This is a single-center retrospective pilot study to determine the reliability of measurement of pulmonary vein stenosis and pulmonary hypertension across different imaging modalities-computed tomography angiography (CTA), echocardiography (echo), lung perfusion scan (LPS), and cardiac catheterization (cath). PVS was defined as > 2 mmHg by echo and cath and/or 50% reduction in diameter by CTA. Patients had to have an echo, CTA and cath performed within a 1-month timeframe of one another to be included in the study, with LPS data included if testing was completed at initial evaluation. Fifteen total patients were enrolled; 87% were categorized as primary PVS; a condition not directly related to direct injury or prior surgical intervention. Twenty-seven total stenotic pulmonary veins were identified (mean 1.8, range 1-4). CTA had a slightly better agreement with cath than echo in identifying PVS in different vein locations except in the LLPV. Additionally, echo and CTA had excellent sensitivity (91%) and specificity (100%) compared to cath for diagnosis of PH. We conclude that non-invasive imaging of echo and CTA has an acceptable correlation to cardiac catheterization for screening and initial evaluation of PVS and PH, as directly related to PVS, in pediatrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...