Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Biomed Pharmacother ; 177: 117093, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971012

RESUMO

Protein phosphorylation is an important link in a variety of signaling pathways, and most of the important life processes in cells involve protein phosphorylation. Based on the amino acid residues of phosphorylated proteins, protein kinases can be categorized into the following families: serine/threonine protein kinases, tyrosine-specific protein kinases, histidine-specific protein kinases, tryptophan kinases, and aspartate/glutamyl protein kinases. Of all the protein kinases, most are serine/threonine kinases, where serine/threonine protein kinases are protein kinases that catalyze the phosphorylation of serine or threonine residues on target proteins using ATP as a phosphate donor. The current socially accepted classification of serine/threonine kinases is to divide them into seven major groups: protein kinase A, G, C (AGC), CMGC, Calmodulin-dependent protein kinase (CAMK), Casein kinase (CK1), STE, Tyrosine kinase (TKL) and others. After decades of research, a preliminary understanding of the specific classification and respective functions of serine/threonine kinases has entered a new period of exploration. In this paper, we review the literature of the previous years and introduce the specific signaling pathways and related therapeutic modalities played by each of the small protein kinases in the serine/threonine protein kinase family, respectively, in some common cardiovascular system diseases such as heart failure, myocardial infarction, ischemia-reperfusion injury, and diabetic cardiomyopathy. To a certain extent, the current research results, including molecular mechanisms and therapeutic methods, are fully summarized and a systematic report is made for the prevention and treatment of cardiovascular diseases in the future.

2.
JAMA Cardiol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888905

RESUMO

Importance: The sustainable effectiveness and safety of a nonphysician community health care practitioner-led intensive blood pressure intervention on cardiovascular disease have not, to the authors' knowledge, been studied, especially in the older adult population. Objective: To evaluate such a multifaceted model with a more stringent blood pressure treatment goal (<130/80 mm Hg) among patients aged 60 years and older with hypertension. Design, Setting, and Participants: This was a 48-month follow-up study of the China Rural Hypertension Control Project (CRHCP), an open-cluster randomized clinical trial, conducted from 2018 to 2023. Participants 60 years and older and younger than 60 years with a diagnosis of hypertension from the CRHCP trial were included for analysis. Individuals were recruited from 326 villages in rural China. Interventions: The well-trained, nonphysician, community health care practitioner implemented a multifaceted intervention program (eg, initiation or titration of antihypertensive medications) to achieve a blood pressure level of less than 130/80 mm Hg, supervised by primary care physicians. Main Outcomes and Measures: Cardiovascular disease (a composite of myocardial infarction, stroke, heart failure requiring hospitalization, and cardiovascular disease death). Results: A total of 22 386 individuals 60 years and older with hypertension and 11 609 individuals younger than 60 years with hypertension were included in the analysis. The mean (SD) age of the participants was 63.0 (9.0) years and included 20 825 females (61.3%). Among the older individuals with hypertension, a total of 11 289 patients were randomly assigned to the intervention group and 11 097 to the usual-care group. During a median (IQR) of 4.0 (4.0-4.1) years, there was a significantly lower rate of total cardiovascular disease (1133 [2.7%] vs 1433 [3.5%] per year; hazard ratio [HR], 0.75; 95% CI, 0.69-0.81; P < .001) and all-cause mortality (1111 [2.5%] vs 1210 [2.8%] per year; HR, 0.90; 95% CI, 0.83-0.98; P = .01) in the intervention group than in the usual-care group. For patients younger than 60 years, the risk reductions were also significant for total cardiovascular disease (HR, 0.64; 95% CI, 0.56-0.75; P < .001), stroke (HR, 0.64; 95% CI, 0.55-0.76; P < .001), heart failure (HR, 0.39; 95% CI, 0.18-0.87; P = .02), and cardiovascular death (HR, 0.54; 95% CI, 0.37-0.77; P < .001), with all interaction P values for age groups greater than .05. In both age categories, the incidences of injurious falls, symptomatic hypotension, syncope, and the results for kidney outcomes did not differ significantly between groups. Conclusions and Relevance: In both the aging and younger general population with hypertension, the nonphysician health care practitioner-led, multifaceted, intensive blood pressure intervention model could effectively and safely reduce the risk of cardiovascular disease and all-cause death. Trial Registration: ClinicalTrials.gov Identifier: NCT03527719.

3.
Pharmacol Res ; : 107281, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942341

RESUMO

Cardiovascular diseases (CVDs) have a complex pathogenesis and pose a major threat to human health. Cardiomyocytes have a low regenerative capacity, and their death is a key factor in the morbidity and mortality of many CVDs. Cardiomyocyte death can be regulated by specific signaling pathways known as programmed cell death (PCD), including apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, etc. Abnormalities in PCD can lead to the development of a variety of cardiovascular diseases, and there are also molecular-level interconnections between different PCD pathways under the same cardiovascular disease model. Currently, the link between programmed cell death in cardiomyocytes and cardiovascular disease is not fully understood. This review describes the molecular mechanisms of programmed death and the impact of cardiomyocyte death on cardiovascular disease development. Emphasis is placed on a summary of drugs and potential therapeutic approaches that can be used to treat cardiovascular disease by targeting and blocking programmed cell death in cardiomyocytes.

4.
Cell Rep ; 43(6): 114366, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38879877

RESUMO

p53 regulates multiple signaling pathways and maintains cell homeostasis under conditions of DNA damage and oxidative stress. Although USP7 has been shown to promote p53 stability via deubiquitination, the USP7-p53 activation mechanism has remained unclear. Here, we propose that DNA damage induces reactive oxygen species (ROS) production and activates ATM-CHK2, and CHK2 then phosphorylates USP7 at S168 and T231. USP7 phosphorylation is essential for its deubiquitination activity toward p53. USP7 also deubiquitinates CHK2 at K119 and K131, increasing CHK2 stability and creating a positive feedback loop between CHK2 and USP7. Compared to peri-tumor tissues, thyroid cancer and colon cancer tissues show higher CHK2 and phosphorylated USP7 (S168, T231) levels, and these levels are positively correlated. Collectively, our results uncover a phosphorylation-deubiquitination positive feedback loop involving the CHK2-USP7 axis that supports the stabilization of p53 and the maintenance of cell homeostasis.


Assuntos
Quinase do Ponto de Checagem 2 , Estresse Oxidativo , Proteína Supressora de Tumor p53 , Peptidase 7 Específica de Ubiquitina , Ubiquitinação , Quinase do Ponto de Checagem 2/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Humanos , Proteína Supressora de Tumor p53/metabolismo , Fosforilação , Retroalimentação Fisiológica , Dano ao DNA , Espécies Reativas de Oxigênio/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Estabilidade Proteica , Animais
5.
Complement Ther Med ; 82: 103052, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763206

RESUMO

OBJECTIVE: The purpose of this systematic review was to examine the association between folic acid supplementation during pregnancy and the risk of preeclampsia. METHODS: Relevant studies were included by searching Embase, PubMed, Scope, Web of science, Cochrane Library databases. Studies were reviewed according to prespecified inclusion and exclusion criteria. Study characteristics were summarized, and study quality was assessed. Risk ratios (RR) and 95% confidence intervals (CI) were used as indicators of effect to assess the relationship between folic acid supplementation and risk of preeclampsia. RESULTS: The protocol of this study was prospectively registered with the PROSPERO (registration No. CRD42022380636). A total of nine studies were included, divided into three groups according to the type of study, containing a total of 107 051 and 105 222 women who were supplemented and not supplemented with folic acid during pregnancy. The results showed that folic acid supplementation during pregnancy could not be proven to reduce the risk of preeclampsia. CONCLUSION: The results of the study suggest that folic acid supplementation alone is not associated with a decreased risk of pre-eclampsia,but the inferences are somewhat limited by the low methodological quality of the included literature, and therefore higher quality studies are needed to prove this point.


Assuntos
Suplementos Nutricionais , Ácido Fólico , Pré-Eclâmpsia , Pré-Eclâmpsia/prevenção & controle , Humanos , Gravidez , Ácido Fólico/uso terapêutico , Ácido Fólico/administração & dosagem , Feminino
6.
Cardiovasc Diabetol ; 23(1): 140, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664681

RESUMO

BACKGROUND: Diabetic vascular remodeling is the most important pathological basis of diabetic cardiovascular complications. The accumulation of advanced glycation end products (AGEs) caused by elevated blood glucose promotes the proliferation and migration of vascular smooth muscle cells (VSMCs), leading to arterial wall thickening and ultimately vascular remodeling. Therefore, the excessive proliferation and migration of VSMCs is considered as an important therapeutic target for vascular remodeling in diabetes mellitus. However, due to the lack of breakthrough in experiments, there is currently no effective treatment for the excessive proliferation and migration of VSMCs in diabetic patients. Bcl-2-associated athanogene 3 (BAG3) protein is a multifunctional protein highly expressed in skeletal muscle and myocardium. Previous research has confirmed that BAG3 can not only regulate cell survival and apoptosis, but also affect cell proliferation and migration. Since the excessive proliferation and migration of VSMCs is an important pathogenesis of vascular remodeling in diabetes, the role of BAG3 in the excessive proliferation and migration of VSMCs and its molecular mechanism deserve further investigation. METHODS: In this study, BAG3 gene was manipulated in smooth muscle to acquire SM22αCre; BAG3FL/FL mice and streptozotocin (STZ) was used to simulate diabetes. Expression of proteins and aortic thickness of mice were detected by immunofluorescence, ultrasound and hematoxylin-eosin (HE) staining. Using human aorta smooth muscle cell line (HASMC), cell viability was measured by CCK-8 and proliferation was measured by colony formation experiment. Migration was detected by transwell, scratch experiments and Phalloidin staining. Western Blot was used to detect protein expression and Co-Immunoprecipitation (Co-IP) was used to detect protein interaction. RESULTS: In diabetic vascular remodeling, AGEs could promote the interaction between BAG3 and signal transducer and activator of transcription 3 (STAT3), leading to the enhanced interaction between STAT3 and Janus kinase 2 (JAK2) and reduced interaction between STAT3 and extracellular signal-regulated kinase 1/2 (ERK1/2), resulting in accumulated p-STAT3(705) and reduced p-STAT3(727). Subsequently, the expression of matrix metallopeptidase 2 (MMP2) is upregulated, thus promoting the migration of VSMCs. CONCLUSIONS: BAG3 upregulates the expression of MMP2 by increasing p-STAT3(705) and decreasing p-STAT3(727) levels, thereby promoting vascular remodeling in diabetes. This provides a new orientation for the prevention and treatment of diabetic vascular remodeling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Movimento Celular , Proliferação de Células , Músculo Liso Vascular , Miócitos de Músculo Liso , Fator de Transcrição STAT3 , Transdução de Sinais , Remodelação Vascular , Fator de Transcrição STAT3/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Animais , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Fosforilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/patologia , Angiopatias Diabéticas/fisiopatologia , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/genética , Masculino , Células Cultivadas , Camundongos Knockout , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Humanos , Camundongos Endogâmicos C57BL , Produtos Finais de Glicação Avançada/metabolismo
7.
Int J Biol Macromol ; 265(Pt 2): 130961, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508558

RESUMO

Previous studies have progressively elucidated the involvement of E3 ubiquitin (Ub) ligases in regulating lipid metabolism. Ubiquitination, facilitated by E3 Ub ligases, modifies critical enzymes in lipid metabolism, enabling them to respond to specific signals. In this review, we aim to present a comprehensive analysis of the role of E3 Ub ligases in lipid metabolism, which includes lipid synthesis and lipolysis, and their influence on cellular lipid homeostasis through the modulation of lipid uptake and efflux. Furthermore, it explores how the ubiquitination process governs the degradation or activation of pivotal enzymes, thereby regulating lipid metabolism at the transcriptional level. Perturbations in lipid metabolism have been implicated in various diseases, including hepatic lipid metabolism disorders, atherosclerosis, diabetes, and cancer. Therefore, this review focuses on the association between E3 Ub ligases and lipid metabolism in lipid-related diseases, highlighting enzymes critically involved in lipid synthesis and catabolism, transcriptional regulators, lipid uptake translocators, and transporters. Overall, this review aims to identify gaps in current knowledge, highlight areas requiring further research, offer potential targeted therapeutic approaches, and provide a comprehensive outlook on clinical conditions associated with lipid metabolic diseases.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Doenças Metabólicas , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Metabolismo dos Lipídeos , Lipídeos
8.
Int J Gen Med ; 17: 971-983, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495923

RESUMO

Aim of the Study: This study analyzes research on TCM formulae in CHD over the past 30 years, using VOSviewer and CiteSpace. It aims to highlight key trends and hotspots in the field. Materials and Methods: The core database of Web of Science was collected, and the search time range was from the establishment of the database to the present (August 2023) for the literature related to the study of TCM prescriptions in CHD, and the information on the number of literature, countries, journals, authors, institutions, keywords were summarized by applying the software VOSviewer and CiteSpace. Results: A total of 135 kinds of literature were included. The number of published journal papers on research on TCM therapeutic formulae for CHD showed an upward trend; China was the most prolific country in this field; the largest number of papers were published in Evid Based Complement Alternat Med, MEDICINE; the average number of citations for authors and institutional analysis revealed that Xu Hao of China Academy of Traditional Chinese Medicine, Mao Jingyuan of Tianjin University of Traditional Chinese Medicine, and Shang Hongcai of Beijing University of Traditional Chinese Medicine constituted the core team of researchers studying the study of TCM formulae for CHD; the keyword analysis suggests that there are mainly 42 specifically named TCM formulae for the treatment of CHD, which are classified into a total of 7 major categories, and the research direction is mainly in the clinical efficacy study of different TCM therapeutic formulae and other aspects. Conclusion: This study shows that there are more types of TCM therapeutic formulae for CHD, and the related research has a good prospect. It is foreseeable that more relevant research results will rely on the study of network pharmacology, signalling pathways, and action targets of TCM therapeutic formulae.

9.
Mol Aspects Med ; 96: 101257, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38430667

RESUMO

Mammalian E3 ubiquitin ligases have emerged in recent years as critical regulators of cellular homeostasis due to their roles in targeting substrate proteins for ubiquitination and triggering subsequent downstream signals. In this review, we describe the multiple roles of WWP2, an E3 ubiquitin ligase with unique and important functions in regulating a wide range of biological processes, including DNA repair, gene expression, signal transduction, and cell-fate decisions. As such, WWP2 has evolved to play a key role in normal physiology and diseases, such as tumorigenesis, skeletal development and diseases, immune regulation, cardiovascular disease, and others. We attempt to provide an overview of the biochemical, physiological, and pathophysiological roles of WWP2, as well as open questions for future research, particularly in the context of putative therapeutic opportunities.


Assuntos
Transdução de Sinais , Ubiquitina-Proteína Ligases , Animais , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Diferenciação Celular , Carcinogênese , Mamíferos
10.
Commun Biol ; 7(1): 382, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553562

RESUMO

Autophagy is a dynamic self-renovation biological process that maintains cell homeostasis and is responsible for the quality control of proteins, organelles, and energy metabolism. The E1-like ubiquitin-activating enzyme autophagy-related gene 7 (ATG7) is a critical factor that initiates classic autophagy reactions by promoting the formation and extension of autophagosome membranes. Recent studies have identified the key functions of ATG7 in regulating the cell cycle, apoptosis, and metabolism associated with the occurrence and development of multiple diseases. This review summarizes how ATG7 is precisely programmed by genetic, transcriptional, and epigenetic modifications in cells and the relationship between ATG7 and aging-related diseases.


Assuntos
Autofagossomos , Autofagia , Proteína 7 Relacionada à Autofagia/genética , Autofagossomos/metabolismo , Autofagia/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
11.
J Adv Res ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38123019

RESUMO

BACKGROUND: Cardiovascular disease (CVD) has been the leading cause of death worldwide for many years. In recent years, exosomes have gained extensive attention in the cardiovascular system due to their excellent biocompatibility. Studies have extensively researched miRNAs in exosomes and found that they play critical roles in various physiological and pathological processes in the cardiovascular system. These processes include promoting or inhibiting inflammatory responses, promoting angiogenesis, participating in cell proliferation and migration, and promoting pathological progression such as fibrosis. AIM OF REVIEW: This systematic review examines the role of exosomes in various cardiovascular diseases such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, heart failure and cardiomyopathy. It also presents the latest treatment and prevention methods utilizing exosomes. The study aims to provide new insights and approaches for preventing and treating cardiovascular diseases by exploring the relationship between exosomes and these conditions. Furthermore, the review emphasizes the potential clinical use of exosomes as biomarkers for diagnosing cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW: Exosomes are nanoscale vesicles surrounded by lipid bilayers that are secreted by most cells in the body. They are heterogeneous, varying in size and composition, with a diameter typically ranging from 40 to 160 nm. Exosomes serve as a means of information communication between cells, carrying various biologically active substances, including lipids, proteins, and small RNAs such as miRNAs and lncRNAs. As a result, they participate in both physiological and pathological processes within the body.

12.
Cell Rep ; 42(11): 113402, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37943659

RESUMO

Oxidative stress-induced autophagy helps to prevent cellular damage and to maintain homeostasis. However, the regulatory pathway that initiates autophagy remains unclear. We previously showed that reactive oxygen species (ROS) function as signaling molecules to activate the ATM-CHK2 pathway and promote autophagy. Here, we find that the E3 ubiquitin ligase TRIM32 functions downstream of ATM-CHK2 to regulate ATG7 ubiquitination. Under metabolic stress, ROS induce ATM phosphorylation at S1981, which in turn phosphorylates CHK2 at T68. We show that CHK2 binds and phosphorylates TRIM32 at the S55 site, which then mediates K63-linked ubiquitination of ATG7 at the K45 site to initiate autophagy. In addition, Chk2-/- mice show an aggravated infarction phenotype and reduced phosphorylation of TRIM32 and ubiquitination of ATG7 in a stroke model. We propose a molecular mechanism for autophagy initiation by ROS via the ATM-CHK2-TRIM32-ATG7 axis to maintain intracellular homeostasis and to protect cells exposed to pathological conditions from stress-induced tissue damage.


Assuntos
Estresse Oxidativo , Ubiquitina-Proteína Ligases , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Autofagia
13.
Basic Res Cardiol ; 118(1): 48, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938421

RESUMO

Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Fosforilação Oxidativa , Aldeído Liases , Redes e Vias Metabólicas
14.
Biomed Pharmacother ; 166: 115228, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37557013

RESUMO

As a widely used lipid-lowering drug in clinical practice, atorvastatin is widely recognized for its role in protecting vascular endothelium in the cardiovascular system. However, a clear mechanistic understanding of its action is lacking. Here, we found that atorvastatin counteracted angiotensin II-induced vascular endothelial injury in mice with hypertension. Mechanistically, atorvastatin up-regulated WWP2, a E6AP C-terminus (HECT)-type E3 ubiquitin ligase with an essential role in regulating protein ubiquitination and various biological processes, thereby rescuing vascular endothelial injury. By ubiquitinating ATP5A (ATP synthase mitochondrial F1 complex subunit alpha), WWP2 degraded ATP5A via the proteasome pathway, stabilizing Bcl-2/Bax in the mitochondrial pathway of apoptosis. Moreover, atorvastatin further ameliorated death of vascular endothelial cells and improved vascular endothelial functions under WWP2 overexpression, whereas WWP2 knockout abrogated these beneficial effects of atorvastatin. Furthermore, we generated endothelial cell-specific WWP2 knockout mice, and this WWP2-mediated mechanism was faithfully recapitulated in vivo. Thus, we propose that activation of a WWP2-dependent pathway that is pathologically repressed in damaged vascular endothelium under hypertension is a major mechanism of atorvastatin. Our findings are also pertinent to develop novel therapeutic strategies for vascular endothelial injury-related cardiovascular diseases.


Assuntos
Células Endoteliais , Hipertensão , Camundongos , Animais , Atorvastatina/farmacologia , Células Endoteliais/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Camundongos Knockout , Hipertensão/tratamento farmacológico
15.
Complement Ther Med ; 77: 102978, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37634763

RESUMO

OBJECTIVE: Tai Chi (TC) is a complementary therapy for knee osteoarthritis (KOA). Although systematic reviews (SRs) and meta-analyses (Mas) of efficacy studies have been published, the results remain uncertain, and their quality has not yet been fully evaluated. Here, we summarize the existing SRs/Mas, evaluate their quality and level of evidence, and provide a reference for the effectiveness of TC. METHODS: SRs/Mas of TC therapy for KOA published before February 2023 were retrieved from eight databases in Chinese and English. The Assessing the Methodological Quality of Systematic Reviews 2 (AMSTAR-2), the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020, and the Risk of Bias in Systematic (ROBIS) scale were used to assess methodological quality, reporting quality, and risk of bias. RESULTS: Seven SRs/Mas were finally included. One was deemed high quality by AMASTAR-2, while the rest were of critically low quality. In the PRISMA2020 assessment, the response rate of "Yes" for Q7, Q15, Q22, Q24, and Q27 was less than 50%. In the ROBIS assessment, three reports in Phase 3 were high risk and four were low risk. In the efficacy assessment, TC has shown varying degrees of improvement in physical function, pain, stiffness, 6-minute walk test, mental quality of life, TUG, and balance in patients with KOA. CONCLUSION: TC effectively treats KOA-associated pain, stiffness, body function, and mental quality of life. However, the low methodological quality of the studies and the high risk of migration reduced their reliability. Therefore, these conclusions should be taken with caution. High-quality, large-sample research is needed to provide stronger and more scientific evidence.


Assuntos
Osteoartrite do Joelho , Tai Chi Chuan , Humanos , Osteoartrite do Joelho/terapia , Qualidade de Vida , Reprodutibilidade dos Testes , Dor
16.
Cell Res ; 33(9): 679-698, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37443257

RESUMO

The sarcomeric interaction of α-myosin heavy chain (α-MHC) with Titin is vital for cardiac structure and contraction. However, the mechanism regulating this interaction in normal and failing hearts remains unknown. Lactate is a crucial energy substrate of the heart. Here, we identify that α-MHC undergoes lactylation on lysine 1897 to regulate the interaction of α-MHC with Titin. We observed a reduction of α-MHC K1897 lactylation in mice and patients with heart failure. Loss of K1897 lactylation in α-MHC K1897R knock-in mice reduces α-MHC-Titin interaction and leads to impaired cardiac structure and function. Furthermore, we identified that p300 and Sirtuin 1 act as the acyltransferase and delactylase of α-MHC, respectively. Decreasing lactate production by chemical or genetic manipulation reduces α-MHC lactylation, impairs α-MHC-Titin interaction and worsens heart failure. By contrast, upregulation of the lactate concentration by administering sodium lactate or inhibiting the pivotal lactate transporter in cardiomyocytes can promote α-MHC K1897 lactylation and α-MHC-Titin interaction, thereby alleviating heart failure. In conclusion, α-MHC lactylation is dynamically regulated and an important determinant of overall cardiac structure and function. Excessive lactate efflux and consumption by cardiomyocytes may decrease the intracellular lactate level, which is the main cause of reduced α-MHC K1897 lactylation during myocardial injury. Our study reveals that cardiac metabolism directly modulates the sarcomeric structure and function through lactate-dependent modification of α-MHC.


Assuntos
Insuficiência Cardíaca , Cadeias Pesadas de Miosina , Animais , Camundongos , Conectina/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miócitos Cardíacos/metabolismo , Lactatos/metabolismo
17.
FASEB J ; 37(8): e23110, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490283

RESUMO

The ubiquitin-proteasome system is a crucial mechanism for regulating protein levels in cells, with substrate-specific E3 ubiquitin ligases serving as an integral component of this system. Among these ligases are SMAD-specific E3 ubiquitin-protein ligase 1 (SMURF1) and SMAD-specific E3 ubiquitin-protein ligase 2 (SMURF2), which belong to the neural precursor cell-expressed developmentally downregulated 4 (NEDD4) subfamily of Homologous to E6-AP COOH terminus (HECT)-type E3 ligases. As E3 ligases, SMURFs have critical functions in regulating the stability of multiple proteins, thereby maintaining physiological processes such as cell migration, proliferation, and apoptosis. The occurrence of many diseases is attributed to abnormal cell physiology and an imbalance in cell homeostasis. It is noteworthy that SMURFs play pivotal roles in disease progression, with the regulatory functions being complex and either facilitative or inhibitory. In this review, we elucidate the mechanisms by which SMURF1 and SMURF2 can regulate disease progression in non-cancerous diseases. These significant findings offer potential novel therapeutic targets for various diseases and new avenues for research on SMURF proteins.


Assuntos
Apoptose , Ubiquitina-Proteína Ligases , Humanos , Movimento Celular , Progressão da Doença , Ubiquitina
18.
Diabetes Metab Syndr ; 17(6): 102791, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37271078

RESUMO

AIMS: To understanding the net regional, national, and economic effect of global population ageing on diabetes and its trends during 1990 and 2019 worldwide. METHODS: We employed a decomposition method to estimate the impact of population ageing on diabetes-related disability-adjusted life years (DALYs) and total deaths in 204 countries from 1990 to 2019 at the global, regional, and national level. This method separated the net effect of population ageing from population growth and changes in mortality. RESULTS: Globally, population ageing has become the major contributor to diabetes-related deaths since 2013. The increases in diabetes-related deaths attributed to population ageing exceeding the decreases in mortality change. Population ageing produced an additional 0.42 million diabetes-related deaths and 14.95 million DALYs from 1990 to 2019. At the regional level, population ageing is associated with the increases in diabetes-related deaths in 18 out of 22 regions. The highest increase in diabetes-related deaths attributed to population ageing occurred in men in East Asia (136.31%) and women in Central Latin America (118.58%). The proportion of diabetes-related deaths and DALYs attributable to population ageing showed a bell-shaped relationship with sociodemographic index (SDI) and peaked at high-middle-SDI countries. CONCLUSIONS: The decreases in diabetes-related deaths attributed to mortality change exceeded the increases attributed to population ageing between 1990 and 2019 globally and regionally. The diabetes-related deaths in high-middle-SDI countries were most impacted by population ageing.


Assuntos
Diabetes Mellitus , Anos de Vida Ajustados por Deficiência , Masculino , Humanos , Feminino , Anos de Vida Ajustados por Qualidade de Vida , Envelhecimento , Fatores de Risco
19.
BMC Cancer ; 23(1): 526, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291499

RESUMO

NEDD4 family represent an important group of E3 ligases, which regulate various cellular pathways of cell proliferation, cell junction and inflammation. Emerging evidence suggested that NEDD4 family members participate in the initiation and development of tumor. In this study, we systematically investigated the molecular alterations as well as the clinical relevance regarding NEDD4 family genes in 33 cancer types. Finally, we found that NEDD4 members showed increased expression in pancreas cancer and decreased expression in thyroid cancer. NEDD4 E3 ligase family genes had an average mutation frequency in the range of 0-32.1%, of which HECW1 and HECW2 demonstrated relatively high mutation rate. Breast cancer harbors large amount of NEDD4 copy number amplification. NEDD4 family members interacted proteins were enriched in various pathways including p53, Akt, apoptosis and autophagy, which were confirmed by further western blot and flow cytometric analysis in A549 and H1299 lung cancer cells. In addition, expression of NEDD4 family genes were associated with survival of cancer patients. Our findings provide novel insight into the effect of NEDD4 E3 ligase genes on cancer progression and treatment in the future.


Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Neoplasias/genética , Proteínas do Tecido Nervoso/genética
20.
Heliyon ; 9(5): e15625, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37180910

RESUMO

Post-translational modifications regulate numerous biochemical reactions and functions through covalent attachment to proteins. Phosphorylation, acetylation and ubiquitination account for over 90% of all reported post-translational modifications. As one of the tyrosine protein kinases, spleen tyrosine kinase (SYK) plays crucial roles in many pathophysiological processes and affects the pathogenesis and progression of various diseases. SYK is expressed in tissues outside the hematopoietic system, especially the heart, and is involved in the progression of various cardio-cerebrovascular diseases, such as atherosclerosis, heart failure, diabetic cardiomyopathy, stroke and others. Knowledge on the role of SYK in the progress of cardio-cerebrovascular diseases is accumulating, and many related mechanisms have been discovered and validated. This review summarizes the role of SYK in the progression of various cardio-cerebrovascular diseases, and aims to provide a theoretical basis for future experimental and clinical research targeting SYK as a therapeutic option for these diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...